67 research outputs found
Laser-induced cooling of broadband heat reservoirs
We explore, theoretically and experimentally, a method for cooling a
broadband heat reservoir, via its laser-assisted collisions with two-level
atoms followed by their fluorescence. This method is shown to be advantageous
compared to existing laser-cooling methods in terms of its cooling efficiency,
the lowest attainable temperature for broadband baths and its versatility: it
can cool down any heat reservoir, provided the laser is red-detuned from the
atomic resonance. It is applicable to cooling down both dense gaseous and
condensed media
Quantum bath refrigeration towards absolute zero: unattainability principle challenged
A minimal model of a quantum refrigerator (QR), i.e. a periodically
phase-flipped two-level system permanently coupled to a finite-capacity bath
(cold bath) and an infinite heat dump (hot bath), is introduced and used to
investigate the cooling of the cold bath towards the absolute zero (T=0).
Remarkably, the temperature scaling of the cold-bath cooling rate reveals that
it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons
in strongly disordered media (fractons) or quantized spin-waves in ferromagnets
(magnons). This result challenges Nernst's third-law formulation known as the
unattainability principle
Cooling by heating in nonequilibrium nanosystems
We demonstrate the possiblity to cool nanoelectronic systems in
nonequilibrium situations by increasing the temperature of the environment.
Such cooling by heating is possible for a variety of experimental conditions
where the relevant transport-induced excitation processes become quenched and
deexcitation processes are enhanced upon an increase of temperature. The
phenomenon turns out to be robust with respect to all relevant parameters. It
is especially pronounced for higher bias voltages and weak to moderate
coupling. Our findings have implications for open quantum systems in general,
where electron transport is coupled to mechanical (phononic) or photonic
degrees of freedom. In particular, molecular junctions with rigid tunneling
pathways or quantum dot circuit QED systems meet the required conditions.Comment: 7 pages, 5 figures, manuscript including supporting informatio
Hierarchical Equations of Motion Approach to Quantum Thermodynamics
We present a theoretical framework to investigate quantum thermodynamic
processes under non-Markovian system-bath interactions on the basis of the
hierarchical equations of motion (HEOM) approach, which is convenient to carry
out numerically "exact" calculations. This formalism is valuable because it can
be used to treat not only strong system-bath coupling but also system-bath
correlation or entanglement, which will be essential to characterize the heat
transport between the system and quantum heat baths. Using this formalism, we
demonstrated an importance of the thermodynamic effect from the tri-partite
correlations (TPC) for a two-level heat transfer model and a three-level
autonomous heat engine model under the conditions that the conventional quantum
master equation approaches are failed. Our numerical calculations show that TPC
contributions, which distinguish the heat current from the energy current, have
to be take into account to satisfy the thermodynamic laws.Comment: 9 pages, 4 figures. As a chapter of: F. Binder, L. A. Correa, C.
Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum
regime - Recent Progress and Outlook", (Springer International Publishing
Autonomous quantum machines and the finite sized Quasi-Ideal clock
Processes such as quantum computation, or the evolution of quantum cellular
automata are typically described by a unitary operation implemented by an
external observer. In particular, an interaction is generally turned on for a
precise amount of time, using a classical clock. A fully quantum mechanical
description of such a device would include a quantum description of the clock
whose state is generally disturbed because of the back-reaction on it. Such a
description is needed if we wish to consider finite sized autonomous quantum
machines requiring no external control. The extent of the back-reaction has
implications on how small the device can be, on the length of time the device
can run, and is required if we want to understand what a fully quantum
mechanical treatment of an observer would look like. Here, we consider the
implementation of a unitary by a finite sized device which we call the
"Quasi-Ideal clock", and show that the back-reaction on it can be made
exponentially small in the device's dimension with only a linear increase in
energy. As a result, an autonomous quantum machine need only be of modest size
and or energy. We are also able to solve a long-standing open problem by using
a finite sized quantum clock to approximate the continuous evolution of an
Idealised clock. The result has implications on the equivalence of different
paradigms of quantum thermodynamics, some which allow external control and some
which only allow autonomous thermal machines.Comment: Main text: 9 + 53 pages. V4: Close to the published version, J.
Annales Henri Poincar\'e (2018) [Communicated by David P\'erez-Garc\'ia
Efficiency of inefficient endoreversible thermal machines
We present a study of the performance of endoreversible thermal machines optimized with respect to the thermodynamic force associated with the cold bath in the regime of small thermodynamic forces. These thermal machines can work either as an engine or as a refrigerator. We analyze how the optimal performances are determined by the dependence of the thermodynamic flux on the forces. The results are motivated and illustrated with a quantum model, the three level maser, and explicit analytical expressions of the engine efficiency as a function of the system parameters are given
Thermodynamic principles and implementations of quantum machines
The efficiency of cyclic heat engines is limited by the Carnot bound. This
bound follows from the second law of thermodynamics and is attained by engines
that operate between two thermal baths under the reversibility condition
whereby the total entropy does not increase. By contrast, the efficiency of
engines powered by quantum non-thermal baths has been claimed to surpass the
thermodynamic Carnot bound. The key to understanding the performance of such
engines is a proper division of the energy supplied by the bath to the system
into heat and work, depending on the associated change in the system entropy
and ergotropy. Due to their hybrid character, the efficiency bound for quantum
engines powered by a non-thermal bath does not solely follow from the laws of
thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such
hybrid engines. Yet, they do not violate the principles of thermodynamics.
An alternative means of boosting machine performance is the concept of
heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of
the piston mode. This enhancement is due to the increased ability of the
squeezed piston to store ergotropy. Since the catalyzed machine is fueled by
thermal baths, it adheres to the Carnot bound.
We conclude by arguing that it is not quantumness per se that improves the
machine performance, but rather the properties of the baths, the working fluid
and the piston that boost the ergotropy and minimize the wasted heat in both
the input and the output.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Recent Progress and
Outlook", (Springer International Publishing
- …
