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Abstract We present a study of the performance of en-

doreversible thermal machines optimized with respect

to the thermodynamic force associated with the cold

bath in the regime of small thermodynamic forces. These

thermal machines can work either as an engine or as a

refrigerator. We analyze how the optimal performances

are determined by the dependence of the thermody-

namic flux on the forces. The results are motivated

and illustrated with a quantum model, the three level

maser, and explicit analytical expressions of the engine

efficiency as a function of the system parameters are

given.

Keywords Efficiency · Quantum thermodynamics ·
Endoreversible

1 Introduction

The study of the efficiency of thermal engines was one

of the problems driving the development of thermody-

namics [1]. Schematically, a thermal machine is repre-

sented as some working material interacting with a hot

(h) and a cold (c) reservoir at temperatures Th and
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Tc, see Fig. 1. In the case of an engine, the system ab-

sorbs some heat at a rate Q̇h from the hot bath, casts

part of it at a rate Q̇c to the cold bath and delivers

useful power P. Conservation of energy demands that

Q̇h + Q̇c + P = 0. Similarly, the whole system acts as

a refrigerator if as a result of injecting some power P
in the system, some heat Q̇c is extracted from the cold

bath. In the case of engines, a performance measure is

given by the efficiency, defined as

η = − P
Q̇h

, (1)

which is bounded by the Carnot efficiency ηC , 0 < η <

ηC = 1 − Tc/Th < 1. The Carnot efficiency is only

reached in idealized models at vanishing rates, and from

a practical point of view a more interesting problem

is the efficiency of both classical [2,3,4,5,6] and quan-

tum [7,8,9,10,11] engines at maximum power output.

In particular, the efficiency at maximum power of an

optimized thermal engine in the endoreversible limit

(where the only irreversible contribution is due to fi-

nite rate heat transfer effects) is given by the Curzon-

Ahlborn expression [2,3,4]

ηCA = 1−
√

1− ηC . (2)

Although ηCA is neither an upper or lower bound for

the efficiency of a general system, it describes reason-

ably well the behavior of actual thermal engines work-

ing with bath temperatures corresponding to low ηC .

The reason of this success can be explained by consid-

ering the Taylor expansion

ηCA =
ηC
2

+
η2C
8

+ · · · . (3)

The first term has been shown to be an upper bound for

the efficiency at maximum power output in the linear

response of engines: low ηC implies Tc ≈ Th, the sta-

tionary state reached by the engine is close to thermal
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Fig. 1 Schematic representation of thermal refrigerators
(left) and engines (right) coupled to a cold bath at tempera-
ture Tc and a hot bath at temperature Th. The heat currents
Q̇α (α = h, c) and power P are defined positive when flowing
towards the working system.

equilibrium, and hence the tools of linear thermody-

namics can be successfully applied [5]. The second term

is found in the analysis of systems with strong coupled

fluxes and with left-right symmetry [6].

A performance measure for refrigerators is the coef-

ficient of performance (COP), defined as

ε =
Q̇c
P
, (4)

which satisfies 0 < ε ≤ εC = Tc/(Th − Tc) < ∞, with

εC the Carnot COP. The optimal performance of classi-

cal and quantum refrigerators has been also extensively

studied [12,13,14]. In particular, it has been shown that

the COP at maximum cooling rate Q̇c of endoreversible

quantum refrigerators depends strongly on the system-

bath interaction mechanism [15,16,17,18], in contrast

to the simple result (3) found for engines. However,

those results are not directly comparable as the refriger-

ator optimal performance lacks the global maximum for

which Eq. (3) is derived in the case of engines. Besides

low Carnot COP corresponds to bath temperatures far

from thermodynamic equilibrium and the tools of linear

thermodynamics cannot be applied.

The purpose of this paper is to analyze the optimal

performance of endoreversible thermal machines that

can work either as engines or refrigerators depending

on an internal control parameter. We consider this con-

trol parameter as the only optimization variable in our

system. In section 2 we motivate our study using a sim-

ple quantum model, the three-level maser. In this model

the larger normalized optimal performances, η/ηC and

ε/εC , are reached in the regime of low Carnot efficiency

and low Carnot COP respectively, together with small

thermodynamic forces. This will be the regime of in-

terest in our analysis. In section 3 we present a generic

model of endoreversible thermal machine. This model

has been previously used to analyze the optimal COP

in Ref. [18]. Here we extend this analysis to engines and

discuss how the dependence of the thermodynamic flux

on the forces determines the optimal performances as

functions of the Carnot efficiency and COP. In partic-

ular, we obtain explicit analytical expressions for the

engine optimal efficiency. In section 4 we illustrate the

results using the three-level maser and the main con-

clusions are drawn in section 5.

2 The three-level maser

The three-level maser [19,20,21] is probably the sim-

plest model of endoreversible thermal machine. The sys-

tem has three levels with Bohr frequencies ωc, ωh, and

Ω = ωh − ωc. It is periodically driven by an external

field tuned to frequency Ω and weakly coupled to exter-

nal unstructured bosonic baths at fixed temperatures Tc
and Th. The cold and hot baths address the transitions

ωc and ωh, respectively. In the weak driving limit the

stationary heat currents and power can be consistently

obtained [16,21]

Q̇c = ωc I ,
Q̇h = −ωh I ,
P = −Q̇h − Q̇c = −(ωc − ωh) I, (5)

where the flux I is given in terms of the relaxation rates

of the baths as

I =
ΓhΓc

(
e−ωc/Tc − e−ωh/Th

)
Γh(1 + 2e−ωh/Th) + Γc(1 + 2e−ωc/Tc)

. (6)

The heat current Q̇c will be referred as cooling rate

when the machine operates as a refrigerator, and P sim-

ply as power.

The rates in (6) for a bosonic bath are given by [22]

Γα = γαω
dα
α [1 +N(ωα)] , (7)

with N(ωa) =
(
eωa/Ta − 1

)−1
, dα the physical dimen-

sionality of the bath, and α = h, c.

We assume some degree of control only over the

system frequencies, ωc and ωh, and the bath temper-

atures, Tc and Th. The three-level maser can operate

either as a refrigerator or as an engine depending on

ωc, which in the following will be considered the op-

timization variable. As depicted in Fig. 2, the cooling

rate has a maximum at some frequency ωRc in the cool-

ing window 0 < ωRc < ωc,max, and the power output

has its maximum at a given frequency ωEc such that

ωc,max ≤ ωEc ≤ ωh. When ωc = ωc,max the machine

reaches the Carnot efficiency

η(ωc,max) = ηC , ε(ωc,max) = εC . (8)

but at zero power and heat currents.
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Fig. 2 Schematic representation of the cold energy current
Q̇c (blue line), hot current Q̇h (red line) and power P =
−(Q̇c+ Q̇h) (green line) in the three-level maser as functions
of the cold transition frequency ωc. The system works as a
refrigerator for cold frequencies in the interval 0 ≤ ωc ≤
ωc,max = ωhTc/Th, and as an engine for ωc,max ≤ ωc ≤ ωh.
The optimal cold frequencies for maximum cooling rate ωRc
and maximum power output ωEc are determined by the model
parameters, in particular ωh.

To analyze the optimization of refrigerators and en-

gines we introduce the thermodynamic forces xc = ωc/Tc
and xh = ωh/Th, related to the cold and hot bath tem-

peratures respectively. The heat currents and the power

are rewritten as

Q̇c = Tc xc I ,
Q̇h = −Th xh I ,
P = −Q̇h − Q̇c = (Thxh − Tcxc) I. (9)

The entropy production is a bilinear form of the forces

xh and xc and the flux I

Ṡ = −Q̇h
Th
− Q̇c
Tc

= (xh − xc) I, (10)

and the efficiency and COP of the machine are

η = 1− (1− ηC)xc/xh,

ε =
εC

(1 + εC)xh/xc − εC
. (11)

According to the previous definitions it follows that

I =


> 0 : xc < xh , (Refrigerator)

0 : xc = xh ,

< 0 : xc > xh , (Engine).

(12)

The optimization variable will be then xc. The max-

imum cooling rate is reached for an optimal force xRc =

ωRc /Tc < xh and the maximum power output for xEc =

ωEc /Tc > xh. Finally we explicitly introduce the Carnot

efficiency and COP into the discussion replacing Tc by

Tc 7−→ (1− ηC)Th, (13)

in the case of engines, and by

Tc 7−→ ThεC/(1 + εC), (14)

when dealing with refrigerators.

Fig. 3 Optimal force xRc (left) and xEc (right) as a function
of xh for Tc = 5, Th = 10 (in arbitrary units), dc = dh = 3
and γc/γh = 1.

Fig. 4 Optimal cooling rate (left) and optimal power output
(right) as a function of xh for Tc = 5, Th = 10 (arbitrary
units), dc = dh = 3 and γc/γh = 1.

2.1 Optimal cooling rate and power output

The optimal force can be obtained from the equation

∂Q̇c
∂xc

= I + xc
∂I
∂xc

= 0, (15)

expressing the extreme condition when working as a

refrigerator, and by

∂P
∂xc

= −(1− ηC)I + (xh − (1− ηC)xc)
∂I
∂xc

= 0, (16)

when operating as an engine.

The solution of the optimization problem in the xc
variable for fixed Tc and Th gives a function x

(R,E)
c of

xh, where theR,E refers to refrigerators and engines re-

spectively. In both cases, such function increases mono-

tonically with xh, but for refrigerators it saturates to

a fixed value, see Fig. 3. For dc = dh = d this value is

given by

xRc (xh →∞) =
5
(
d+ 1 +W

(
(−d− 1) e−d−1

))
Tc

, (17)

where W(x) the Lambert function [23].

The optimal cooling rate also increases monotoni-

cally with xh until saturation, as shown in Fig. 4. In

contrast, the optimal power output has a minimum

value at a given xh and a further optimization in this

variable is possible. This additional optimization is con-

sidered for example in Ref. [6]. To keep a fair compar-

ison between refrigerators and engines we focus on a

partial optimization in the control variable xc.

Next we discuss the efficiency (ηE) and COP (εR)

for the optimal force x
(R,E)
c . In Fig. 5 we show them as
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Fig. 5 COP and efficiency at the optimal point as a function
of force xh for the three-level refrigerator (left) and engine
(right). The Carnot COPs are εC = 0.05 (blue dashed line)
and εC = 19 (orange solid line). The Carnot efficiencies are
ηC = 0.05 (blue dashed line) and ηC = 0.95 (orange solid
line). We set ωh = 1, Th = 10 (arbitrary units), dc = dh = 3
and γc/γh = 1.

Fig. 6 Normalized performances obtained from figure 5.

Fig. 7 Flux I at the optimal point x
(R,E)
c as a function

of xh for the three-level refrigerator (left) and engine (right)
setting the bath dimensions dc = dh = 1 (blue solid line),
2 (orange dashed line) and 3 (red dashed-dotted line). The
other parameters are Tc = 5, Th = 10 (arbitrary units) and
γc/γh = 1.

a function of the force xh for two cases, low and large

Carnot efficiency and COP.

A different scenario emerges in Fig. 6 when one

looks at the normalized performances, defined as εR/εC
for refrigerators and ηE/ηC for engines. Now, the less

efficient machines have the largest normalized perfor-

mances. In the case of refrigerators, although the cool-

ing rate increases with xh, the COP, both absolute and

normalized, decreases. Besides, the larger values of the

normalized COP and efficiency correspond to bath tem-

peratures leading to low εC and ηC repectively. These

results set the conditions of interest for our comparison:

small thermodynamic forces and low εC and ηC .

The efficiency (11) at the optimal point is deter-

mined by x
(R,E)
c , which in turns depends on the explicit

form of I through Eqs. (15) and (16). Hence, an impor-

tant feature of the model is the relation between the

flux I and the thermodynamical forces. Figure 7 shows

the flux at the optimal point for small xh. A different

behavior is found depending on the physical dimension-

ality of the bath. In next section we show how such be-

havior determines the normalized performance in each

case.

3 Performance in the regime of small forces

In this section we study a generic model of endorever-

sible machine in the regime of small thermodynamic

forces. In this model the heat currents and power are

given by Eqs. (9) and (12). The particular nature of a

given classical or quantum machine will be then deter-

mined by the relation between the flux I and the system

parameters. However, in our discussion only two very

general assumptions about its dependence on the ther-

modynamic forces are needed: when xh vanishes (a) the

optimal point xRc for the refrigerator and (b) the opti-

mal point xEh for the engine go to zero, as found in the

three-level maser, see Fig. 3.

The analysis of the optimal performance follows the

study in Ref. [18] for refrigerators. Using the previous

assumptions, the optimal value x
(R,E)
c can be approxi-

mated by a power series in xh,

x(R,E)
c = C

(R,E)
1 xh + C

(R,E)
2 x2h + · · · (18)

In the case of refrigerators and for small xh we can keep

the first term, xRc ≈ CR1 xh. The coefficient CR1 will be

a function of all parameters of the problem, satisfying

CR1 (Th, εC , Γc, Γh, ...) ≤ 1. (19)

Moreover, it determines the COP at maximum cooling

rate as

εR =
εC

(εC + 1)xh/xRc − εC
=

CR1 εC
(1− CR1 )εC + 1

. (20)

The previous discussion can be applied also for en-

gines. Now xEc ≈ CE1 xh with CE1 ≥ 1, in terms of which

the efficiency at maximum output power is

ηE = 1− (1− ηC)xEc /xh = 1− (1− ηC)CE1 . (21)

In the regime of small forces, the coefficients C
(R,E)
1

will be determined by the first non-zero term of the

Taylor expansion of the current I

I(xc, xh) =
∑
i=c,h

Ii(0, 0)xi +
1

2!

∑
i,j=c,h

Iij(0, 0)xixj +

+
1

3!

∑
i,j,k=c,h

Iijk(0, 0)xixjxk + · · · , (22)

as discussed below.



Efficiency of inefficient endoreversible thermal machines 5

3.1 Linear term

Let us assume that the first non zero term in (22) is the

linear term. Then

I ≈ I0(xh − xc) (23)

because I(xc = xh) = 0. As a consequence, it follows

that

CR1 =
1

2
,

CE1 =
2− ηC

2(1− ηC)
. (24)

With these coefficients the normalized COP and effi-

ciency at the optimal forces are given by

εR

εC
=

1

2 + εC
, (25)

and
ηE

ηC
=

1

2
. (26)

3.2 Higher orders

When the first order is zero, higher orders in the ex-

pansion (22) must be considered. For simplicity, let us

assume the particular form

I = I0xd−1
c (xh − xc), (27)

of the current for small forces, where d is a model pa-

rameter. With this choice, the first non-zero term in

the expansion will be the d-term. For example, when

d = 1, the linear case is recovered. Applying the same

procedure as before, it follows that

CR1 =
d

d+ 1
, (28)

what leads to the normalized COP at the optimal force

[16]

εR

εC
=

d

d+ 1 + εC
. (29)

In the case of engines, the same procedure gives

CE1 =
d(2− ηC) +

√
d2η2C − 4ηC + 4

2(d+ 1)(1− ηC)
(30)

and the normalized efficiency at maximum power

ηE

ηC
=

2 + d ηC −
√
d2η2C − 4ηC + 4

2(d+ 1)ηC
. (31)

In the limit of vanishing Carnot efficiency ηE → ηC/2.

We have shown that the normalized performances

are determined by the flux I and therefore by details

of the model such as the coupling between system and

baths. In the linear case εR/εC and ηE/ηC tend to 1/2

in the limit of vanishing Carnot efficiency and COP.

However, for higher orders the normalized COP could

saturate at different values, see Eq. (29). In contrast,

ηE/ηC always saturates at 1/2 in the limit of vanishing

Carnot efficiency.

Fig. 8 Normalized optimal performance for three-level re-
frigerators (left) and engines (right) for dc = dh = 1 (blue
solid line), 2 (orange solid line), 3 (red solid line) and γc/γh =
1. The dashed lines are the results of Eqs. (29) and (31) in
each case. The parameters used are ωh = 1, Tc = 5 and
Th = 10 (arbitrary units).

Fig. 9 As in figure 8 but for γc/γh = 0.01.

4 Example: the three-level maser in the regime

of high temperatures.

In the regime of high temperatures, in which the ther-

modynamic forces xc, xh � 1, the flux (6) is given by

I ≈ Γc(xh − xc)
3(1 + Γc/Γh)

, (32)

with

Γc
Γh

=
γc
γh

xdc−1
c

xdh−1
h

T dcc

T dhh
. (33)

Hence the dependence of the denominator of Eq. (32)

on xc and xh can be neglected when: (a) dh = dc = 1,

(b) γc � γh, or (c) εC � 1, see Eq. (14). In such cases

I ∝ xdc−1
c (xh − xc), (34)

which matches Eq. (27). In particular, when εC −→ 0

Eq. (29) gives

εR

εC
=

dc
dc + 1

, (35)

which is the maximum normalized efficiency for opti-

mized quantum refrigerators coupled to bosonic cold

baths of physical dimensionality dc [15,16,17,18].

Figure 8 shows εR/εC and ηE/ηC for equal coupling

strengths, γc/γh = 1. In this case the equations derived

in section 3 are good approximations for the normalized

efficiencies of the thermal machine. The agreement with

Eqs. (29) and (31) improves when γc/γh < 1, as shown

in figure 9.
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5 Conclusions

In this paper we have studied the normalized perfor-

mances of optimized endoreversible thermal machines

working either as refrigerators or as engines depending

on the values of the thermodynamic force related to

the cold bath temperature, which has been chosen as

the control parameter. The optimization has been per-

formed with respect to this parameter to obtain the

maximum cooling rate or power output. This is the

main difference with previous studies on the efficiency

at maximum power output, see for instance [2,3,4,5,

6], where an optimization involving all thermodynamic

forces is considered. We have focused on the regime of

small thermodynamic forces and low εC and ηC . We

must emphasize that bath temperatures leading to low

εC or ηC correspond to very different physical situations

in each case: very far from equilibrium for refrigerators,

as Tc � Th, and very close to equilibrium for engines.

However, by considering an optimization with respect

to a single parameter and low Carnot efficiency and

COP, the optimal performance of the thermal machine

can be analyzed for both operating modes under the

same conditions.

Considering very general assumptions about the en-

doreversible machine, we have determined the normal-

ized performance as a function of the Carnot efficiency

and COP. For vanishing COP, εR/εC saturates at dif-

ferent values depending on which is the first non-zero

term in the Taylor expansion of the flux. The value 1/2

is reached only when the flux is linear in the thermo-

dynamic forces [18]. In contrast, we have found that

for engines ηE/ηC always saturates at 1/2 in spite of

the dependence of the optimal efficiency on the system

parameters. Although the results have been illustrated

using a quantum endoreversible model, the three-level

maser, our analysis applies to any system, classical or

quantum, given some knowledge about the dependence

of the flux on the thermodynamic forces.

We have focused on endoreversible systems but ad-

ditional sources of irreversibility can be considered to

model more realistic machines. Their effect in the sys-

tem efficiency and COP has been studied for example in

Ref. [13,24,25]. The question whether those additional

sources of irreversibility have a different influence on the

optimal performance when considering refrigerators or

engines will be the subject of future work.
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