1,699 research outputs found

    Novel shock absorber features varying yield strengths

    Get PDF
    A shock absorbent webbing of partially drawn synthetic strands is arranged in sections of varying density related to the varying mass of the human body. This is contoured to protect the body at points of contact, when subjected to large acceleration or deceleration forces

    Nonlinear response of a linear chain to weak driving

    Get PDF
    We study the escape of a chain of coupled units over the barrier of a metastable potential. It is demonstrated that a very weak external driving field with suitably chosen frequency suffices to accomplish speedy escape. The latter requires the passage through a transition state the formation of which is triggered by permanent feeding of energy from a phonon background into humps of localised energy and elastic interaction of the arising breather solutions. In fact, cooperativity between the units of the chain entailing coordinated energy transfer is shown to be crucial for enhancing the rate of escape in an extremely effective and low-energy cost way where the effect of entropic localisation and breather coalescence conspire

    Moment Equations for a Spatially Extended System of Two Competing Species

    Get PDF
    The dynamics of a spatially extended system of two competing species in the presence of two noise sources is studied. A correlated dichotomous noise acts on the interaction parameter and a multiplicative white noise affects directly the dynamics of the two species. To describe the spatial distribution of the species we use a model based on Lotka-Volterra (LV) equations. By writing them in a mean field form, the corresponding moment equations for the species concentrations are obtained in Gaussian approximation. In this formalism the system dynamics is analyzed for different values of the multiplicative noise intensity. Finally by comparing these results with those obtained by direct simulations of the time discrete version of LV equations, that is coupled map lattice (CML) model, we conclude that the anticorrelated oscillations of the species densities are strictly related to non-overlapping spatial patterns.Comment: 10 pages, 3 figure

    Moment equations in a Lotka-Volterra extended system with time correlated noise

    Get PDF
    A spatially extended Lotka-Volterra system of two competing species in the presence of two correlated noise sources is analyzed: (i) an external multiplicative time correlated noise, which mimics the interaction between the system and the environment; (ii) a dichotomous stochastic process, whose jump rate is a periodic function, which represents the interaction parameter between the species. The moment equations for the species densities are derived in Gaussian approximation, using a mean field approach. Within this formalism we study the effect of the external time correlated noise on the ecosystem dynamics. We find that the time behavior of the 1st1^{st} order moments are independent on the multiplicative noise source. However the behavior of the 2nd2^{nd} order moments is strongly affected both by the intensity and the correlation time of the multiplicative noise. Finally we compare our results with those obtained studying the system dynamics by a coupled map lattice model.Comment: 12 pages, 7 figures, to appear in Acta Phys. Pol.

    Cooperative surmounting of bottlenecks

    Full text link
    The physics of activated escape of objects out of a metastable state plays a key role in diverse scientific areas involving chemical kinetics, diffusion and dislocation motion in solids, nucleation, electrical transport, motion of flux lines superconductors, charge density waves, and transport processes of macromolecules, to name but a few. The underlying activated processes present the multidimensional extension of the Kramers problem of a single Brownian particle. In comparison to the latter case, however, the dynamics ensuing from the interactions of many coupled units can lead to intriguing novel phenomena that are not present when only a single degree of freedom is involved. In this review we report on a variety of such phenomena that are exhibited by systems consisting of chains of interacting units in the presence of potential barriers. In the first part we consider recent developments in the case of a deterministic dynamics driving cooperative escape processes of coupled nonlinear units out of metastable states. The ability of chains of coupled units to undergo spontaneous conformational transitions can lead to a self-organised escape. The mechanism at work is that the energies of the units become re-arranged, while keeping the total energy conserved, in forming localised energy modes that in turn trigger the cooperative escape. We present scenarios of significantly enhanced noise-free escape rates if compared to the noise-assisted case. The second part deals with the collective directed transport of systems of interacting particles overcoming energetic barriers in periodic potential landscapes. Escape processes in both time-homogeneous and time-dependent driven systems are considered for the emergence of directed motion. It is shown that ballistic channels immersed in the associated high-dimensional phase space are the source for the directed long-range transport

    An investigation of supersonic store interference in the vicinity of a 22 deg swept wing fuselage configuration at Mach numbers of 1.61 and 2.01

    Get PDF
    Pressure tunnel investigation of supersonic store interference in vicinity of 22 deg swept wing fuselage configuration at mach numbers 1.61 and 2.0

    Shock absorbing support and restraint means Patent

    Get PDF
    Shock absorbing couch for body support under high acceleration or deceleration force
    corecore