11,420 research outputs found

    Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    Full text link
    The mean value of the one-loop energy-momentum tensor in thermal QED with electric-like background that creates particles from vacuum is calculated. The problem differes essentially from calculations of effective actions (similar to that of Heisenberg--Euler) in backgrounds that do not violate the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and its duration under which one can neglect the back-reaction of created particles are established.Comment: 7 pages, Talk presented at Workshop "Quantum Field Theory under the Influence of External Conditions", Leipzig, September 17-21, 2007; introduction extended, version accepted for publication in J.Phys.

    A statistical study of variations of internal gravity wave energy characteristics in meteor zone

    Get PDF
    Internal gravity wave (IGW) parameters obtained by the radiometer method have been considered by many other researchers. The results of the processing of regular radiometeor measurements taken during 1979 to 1980 in Obninsk (55.1 deg N, 36.6 deg E) are presented

    Creation of Dirac neutrinos in a dense medium with time-dependent effective potential

    Get PDF
    We consider Dirac neutrinos interacting with background fermions in the frame of the standard model. We demonstrate that a time-dependent effective potential is quite possible in a protoneutron star (PNS) at certain stages of its evolution. For the first time, we formulate a nonperturbative treatment of neutrino processes in a matter with arbitrary time-dependent effective potential. Using linearly growing effective potential, we study the typical case of a slowly varying matter interaction potential. We calculate differential mean numbers of ννˉ\nu \bar{\nu} pairs created from the vacuum by this potential and find that they crucially depend on the magnitude of masses of the lightest neutrino eigenstate. These distributions uniformly span up to 10\sim 10 eV energies for muon and tau neutrinos created in PNS core due to the compression just before the hydrodynamic bounce and up to 0.1\sim 0.1 eV energies for all three active neutrino flavors created in the neutronization. Considering different stages of the PNS evolution, we derive constraints on neutrino masses, mν(108107)m_{\nu}\lesssim (10^{-8}-10^{-7}) eV corresponding to the nonvanishing ννˉ\nu \bar{\nu} pairs flux produced by this mechanism. We show that one can distinguish such coherent flux from chaotic fluxes of any other origin. Part of these neutrinos, depending on the flavor and helicity, are bounded in the PNS, while antineutrinos of any flavor escape the PNS. If the created pairs are νeνˉe\nu_{e}\bar{\nu}_{e}, then a part of the corresponding neutrinos also escape the PNS. The detection of ν\nu and νˉ\bar{\nu} with such low energies is beyond current experimental techniques.Comment: 18 pages, Revtex4.1, 1 eps figure, 2 columns; minimal changes, version to be published in Phys. Rev.

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure

    Pair production from the vacuum by a weakly inhomogeneous space-dependent electric potential step

    Get PDF
    There exists a clear physical motivation for theoretical studies of the vacuum instability related to the production of electron-positron pairs from a vacuum due to strong external electric fields. Various nonperturbative (with respect to the external fields) calculation methods were developed. Some of these methods are based on possible exact solutions of the Dirac equation. Unfortunately, there are only few cases when such solutions are known. Recently, an approximate but still nonperturbative approach to treat the vacuum instability caused by slowly varying tt-electric potential steps (time dependent external fields that vanish as t|t|\rightarrow\infty), which does not depend on the existence of the corresponding exact solutions, was formulated in Ref. [S. P. Gavrilov, D. M. Gitman, Phys. Rev. D \textbf{95}, 076013 (2017)]. Here, we present an approximate calculation method to treat nonperturbatively the vacuum instability in arbitrary weakly inhomogeneous xx-electric potential steps (time-independent electric fields of a constant direction that are concentrated in restricted space areas, which means that the fields vanish as x|x|\rightarrow\infty) in the absence of the corresponding exact solutions. Defining the weakly inhomogeneous regime in general terms, we demonstrate the universal character of the vacuum instability. This universality is associated with a large density of states excited from the vacuum by the electric field. Such a density appears in our approach as a large parameter. We derive universal representations for the total number and current density of the created particles. Relations of these representations with a locally constant field approximation for Schwinger's effective action are found.Comment: 17 pages; misprints corrected, misprints corrected, the title slightly changed during review process; version accepted for publicatio

    States of charged quantum fields and their statistical properties in the presence of critical potential steps

    Get PDF
    Evolution of charged quantum fields under the action of constant nonuniform electric fields is studied. To this end we construct a special generating functional for density operators of the quantum fields with different initial conditions. Then we study some reductions of the density operators. For example, reductions to electron or positron subsystems, reduction induced by measurements, and spatial reduction to the left or to the right subsystems of final particles. We calculate von Neumann entropy for the corresponding reduced density operators, estimating in such a way an information loss. Then we illustrate the obtained results by calculations in a specific background of a strong constant electric field between two infinite capacitor plates separated by a finite distance LL.Comment: 30 pages, 2 figures; misprints corrected, most of the auxiliary formulas are transferred to appendixes, version accepted for publication in PR
    corecore