321 research outputs found
Imaging geometry through dynamics: the observable representation
For many stochastic processes there is an underlying coordinate space, ,
with the process moving from point to point in or on variables (such as
spin configurations) defined with respect to . There is a matrix of
transition probabilities (whether between points in or between variables
defined on ) and we focus on its ``slow'' eigenvectors, those with
eigenvalues closest to that of the stationary eigenvector. These eigenvectors
are the ``observables,'' and they can be used to recover geometrical features
of
Theoretical study of finite temperature spectroscopy in van der Waals clusters. II Time-dependent absorption spectra
Using approximate partition functions and a master equation approach, we
investigate the statistical relaxation toward equilibrium in selected CaAr
clusters. The Gaussian theory of absorption (previous article) is employed to
calculate the average photoabsorption intensity associated with the 4s^2->
4s^14p^1 transition of calcium as a function of time during relaxation. In
CaAr_6 and CaAr_10 simple relaxation is observed with a single time scale.
CaAr_13 exhibits much slower dynamics and the relaxation occurs over two
distinct time scales. CaAr_37 shows much slower relaxation with multiple
transients, reminiscent of glassy behavior due to competition between different
low-energy structures. We interpret these results in terms of the underlying
potential energy surfaces for these clusters.Comment: 10 pages, 9 figure
Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n
The photoabsorption spectra of calcium-doped argon clusters CaAr_n are
investigated at thermal equilibrium using a variety of theoretical and
numerical tools. The influence of temperature on the absorption spectra is
estimated using the quantum superposition method for a variety of cluster sizes
in the range 6<=n<=146. At the harmonic level of approximation, the absorption
intensity is calculated through an extension of the Gaussian theory by Wadi and
Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple,
few-atom systems in both the classical and quantum regimes for which highly
accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic
corrections to the partition functions and respective weights of the isomers,
we show that the superposition method can correctly describe the
finite-temperature spectroscopic properties of CaAr_n systems. The use of the
absorption spectrum as a possible probe of isomerization or phase changes in
the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure
Extinction in Lotka-Volterra model
Competitive birth-death processes often exhibit an oscillatory behavior. We
investigate a particular case where the oscillation cycles are marginally
stable on the mean-field level. An iconic example of such a system is the
Lotka-Volterra model of predator-prey competition. Fluctuation effects due to
discreteness of the populations destroy the mean-field stability and eventually
drive the system toward extinction of one or both species. We show that the
corresponding extinction time scales as a certain power-law of the population
sizes. This behavior should be contrasted with the extinction of models stable
in the mean-field approximation. In the latter case the extinction time scales
exponentially with size.Comment: 11 pages, 17 figure
Algebraic Aspects of Abelian Sandpile Models
The abelian sandpile models feature a finite abelian group G generated by the
operators corresponding to particle addition at various sites. We study the
canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X
Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G,
and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of
toppling matrix. We construct scalar functions, linear in height variables of
the pile, that are invariant toppling at any site. These invariants provide
convenient coordinates to label the recurrent configurations of the sandpile.
For an L X L square lattice, we show that g = L. In this case, we observe that
the system has nontrivial symmetries coming from the action of the cyclotomic
Galois group of the (2L+2)th roots of unity which operates on the set of
eigenvalues of the toppling matrix. These eigenvalues are algebraic integers,
whose product is the order |G|. With the help of this Galois group, we obtain
an explicit factorizaration of |G|. We also use it to define other simpler,
though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3
On population extinction risk in the aftermath of a catastrophic event
We investigate how a catastrophic event (modeled as a temporary fall of the
reproduction rate) increases the extinction probability of an isolated
self-regulated stochastic population. Using a variant of the Verhulst logistic
model as an example, we combine the probability generating function technique
with an eikonal approximation to evaluate the exponentially large increase in
the extinction probability caused by the catastrophe. This quantity is given by
the eikonal action computed over "the optimal path" (instanton) of an effective
classical Hamiltonian system with a time-dependent Hamiltonian. For a general
catastrophe the eikonal equations can be solved numerically. For simple models
of catastrophic events analytic solutions can be obtained. One such solution
becomes quite simple close to the bifurcation point of the Verhulst model. The
eikonal results for the increase in the extinction probability caused by a
catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure
Exact solutions for a mean-field Abelian sandpile
We introduce a model for a sandpile, with N sites, critical height N and each
site connected to every other site. It is thus a mean-field model in the
spin-glass sense. We find an exact solution for the steady state probability
distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe
Topological methods for searching barriers and reaction paths
We present a family of algorithms for the fast determination of reaction
paths and barriers in phase space and the computation of the corresponding
rates. The method requires the reaction times be large compared to the
microscopic time, irrespective of the origin - energetic, entropic, cooperative
- of the timescale separation. It lends itself to temperature cycling as in
simulated annealing and to activation-relaxation routines. The dynamics is
ultimately based on supersymmetry methods used years ago to derive Morse
theory. Thus, the formalism automatically incorporates all relevant topological
information.Comment: 4 pages, 4 figures, RevTex
Relative momentum for identical particles
Possible definitions for the relative momentum of identical particles are
considered
Spectral properties of zero temperature dynamics in a model of a compacting granular column
The compacting of a column of grains has been studied using a one-dimensional
Ising model with long range directed interactions in which down and up spins
represent orientations of the grain having or not having an associated void.
When the column is not shaken (zero 'temperature') the motion becomes highly
constrained and under most circumstances we find that the generator of the
stochastic dynamics assumes an unusual form: many eigenvalues become
degenerate, but the associated multi-dimensional invariant spaces have but a
single eigenvector. There is no spectral expansion and a Jordan form must be
used. Many properties of the dynamics are established here analytically; some
are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table
- …
