321 research outputs found

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. II Time-dependent absorption spectra

    Full text link
    Using approximate partition functions and a master equation approach, we investigate the statistical relaxation toward equilibrium in selected CaArn_n clusters. The Gaussian theory of absorption (previous article) is employed to calculate the average photoabsorption intensity associated with the 4s^2-> 4s^14p^1 transition of calcium as a function of time during relaxation. In CaAr_6 and CaAr_10 simple relaxation is observed with a single time scale. CaAr_13 exhibits much slower dynamics and the relaxation occurs over two distinct time scales. CaAr_37 shows much slower relaxation with multiple transients, reminiscent of glassy behavior due to competition between different low-energy structures. We interpret these results in terms of the underlying potential energy surfaces for these clusters.Comment: 10 pages, 9 figure

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n

    Full text link
    The photoabsorption spectra of calcium-doped argon clusters CaAr_n are investigated at thermal equilibrium using a variety of theoretical and numerical tools. The influence of temperature on the absorption spectra is estimated using the quantum superposition method for a variety of cluster sizes in the range 6<=n<=146. At the harmonic level of approximation, the absorption intensity is calculated through an extension of the Gaussian theory by Wadi and Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple, few-atom systems in both the classical and quantum regimes for which highly accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic corrections to the partition functions and respective weights of the isomers, we show that the superposition method can correctly describe the finite-temperature spectroscopic properties of CaAr_n systems. The use of the absorption spectrum as a possible probe of isomerization or phase changes in the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure

    Extinction in Lotka-Volterra model

    Full text link
    Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.Comment: 11 pages, 17 figure

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3

    On population extinction risk in the aftermath of a catastrophic event

    Full text link
    We investigate how a catastrophic event (modeled as a temporary fall of the reproduction rate) increases the extinction probability of an isolated self-regulated stochastic population. Using a variant of the Verhulst logistic model as an example, we combine the probability generating function technique with an eikonal approximation to evaluate the exponentially large increase in the extinction probability caused by the catastrophe. This quantity is given by the eikonal action computed over "the optimal path" (instanton) of an effective classical Hamiltonian system with a time-dependent Hamiltonian. For a general catastrophe the eikonal equations can be solved numerically. For simple models of catastrophic events analytic solutions can be obtained. One such solution becomes quite simple close to the bifurcation point of the Verhulst model. The eikonal results for the increase in the extinction probability caused by a catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure

    Exact solutions for a mean-field Abelian sandpile

    Full text link
    We introduce a model for a sandpile, with N sites, critical height N and each site connected to every other site. It is thus a mean-field model in the spin-glass sense. We find an exact solution for the steady state probability distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe

    Topological methods for searching barriers and reaction paths

    Full text link
    We present a family of algorithms for the fast determination of reaction paths and barriers in phase space and the computation of the corresponding rates. The method requires the reaction times be large compared to the microscopic time, irrespective of the origin - energetic, entropic, cooperative - of the timescale separation. It lends itself to temperature cycling as in simulated annealing and to activation-relaxation routines. The dynamics is ultimately based on supersymmetry methods used years ago to derive Morse theory. Thus, the formalism automatically incorporates all relevant topological information.Comment: 4 pages, 4 figures, RevTex

    Relative momentum for identical particles

    Full text link
    Possible definitions for the relative momentum of identical particles are considered

    Spectral properties of zero temperature dynamics in a model of a compacting granular column

    Full text link
    The compacting of a column of grains has been studied using a one-dimensional Ising model with long range directed interactions in which down and up spins represent orientations of the grain having or not having an associated void. When the column is not shaken (zero 'temperature') the motion becomes highly constrained and under most circumstances we find that the generator of the stochastic dynamics assumes an unusual form: many eigenvalues become degenerate, but the associated multi-dimensional invariant spaces have but a single eigenvector. There is no spectral expansion and a Jordan form must be used. Many properties of the dynamics are established here analytically; some are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table
    corecore