We investigate how a catastrophic event (modeled as a temporary fall of the
reproduction rate) increases the extinction probability of an isolated
self-regulated stochastic population. Using a variant of the Verhulst logistic
model as an example, we combine the probability generating function technique
with an eikonal approximation to evaluate the exponentially large increase in
the extinction probability caused by the catastrophe. This quantity is given by
the eikonal action computed over "the optimal path" (instanton) of an effective
classical Hamiltonian system with a time-dependent Hamiltonian. For a general
catastrophe the eikonal equations can be solved numerically. For simple models
of catastrophic events analytic solutions can be obtained. One such solution
becomes quite simple close to the bifurcation point of the Verhulst model. The
eikonal results for the increase in the extinction probability caused by a
catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure