96 research outputs found

    Apparition d’anticorps anti-brucelliques après emploi d’une seringue ayant contenu du vaccin B 19

    Get PDF
    Dans cette expérimentation 6 jeunes bovins et 6 moutons indemnes de brucellose reçoivent du vaccin anti-aphteux à l’aide d’une seringue ayant contenu du vaccin B 19. On constate alors l’apparition d’agglutinines anti-brucelliques à des taux pouvant dépasser 240 Ul/ml chez certains animaux dès le quinzième jour après l’injection et susceptibles de persister encore au trentième jour. Cette formation d’anticorps est liée à la présence de Brucella résiduelles dans la seringue. L’épreuve au mercaptoéthanol confirme leur origine vaccinale. Ces résultats sont en accord avec ceux de Ch. Pilet, G. Beck et G. A. Cullen. C’est pourquoi on ne saurait apporter trop de soins au nettoyage des seringues ayant contenu du vaccin B 19 lorsque l’on doit les employer pour un autre usage

    Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought

    Get PDF
    In 2000-03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these condition

    Looking deeper into the soil : biophysical controls and seasonal lags of soil CO2 production and efflux

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1569–1582, doi:10.1890/09-0693.1.We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (θ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, θ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, θ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, θ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.Data collection was possible thanks to NASA, the NSF Center for Embedded Networked Sensing (CCR-0120778), DOE (DE-FG02-03ER63638), CONACyT, UCMEXUS, NSF (EF-0410408), NSF-LTER, KAKENHI (12878089 and 13480150), the Academy of Finland (213093), the Austrian Science Fund (FWF, P18756-B16), the Kearney Foundation, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and the Natural Science and Engineering Research Council of Canada (NSERC). R. Vargas was supported by grant DEB-0639235 during the preparation of this manuscript

    Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China

    Get PDF
    China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 µmol CO2 m−2s−1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C m−2 year−1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration

    Human capital, externalities and growth in an overlapping generations model

    No full text
    We consider an overlapping generations model with endogenous labor supplies by young and old and a human capital accumulation process that relies on the interaction of these two types of labor. This interaction is not understood by the market hence we analyze fiscal policies designed to remedy this. We argue that taxes must be acceptable to people alive at the time of planning. This makes many proposed taxes unfeasible. Two distinct paths to growth emerge; one through increased savings and another through increased workforce participation. The long run rate of growth depends entirely on human capital but we find this to be of little relevance. Some simulation results are presented for two stylized economic blocks calibrated on the USA and the EURO-zone.Overlapping generations model Endogenous labor supply Learning-by-doing Human capital
    • …
    corecore