1,605 research outputs found

    Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

    Full text link
    We present two embeddings of infinite-valued Lukasiewicz logic L into Meyer and Slaney's abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of complexity co-NP; unlabelled single sequent calculi for A and L.Comment: 35 pages, 1 figur

    Towards automating duality

    No full text
    Dualities between different theories occur frequently in mathematics and logic --- between syntax and semantics of a logic, between structures and power structures, between relations and relational algebras, to name just a few. In this paper we show for the case of structures and power structures how corresponding properties of the two related structures can be computed fully automatically by means of quantifier elimination algorithms and predicate logic theorem provers. We illustrate the method with a large number of examples and we give enough technical hints to enable the reader who has access to the {\sc Otter} theorem prover to experiment herself

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    On Fibring Semantics for BDI Logics

    Get PDF
    This study examines BDI logics in the context of Gabbay's fibring semantics. We show that dovetailing (a special form of fibring) can be adopted as a semantic methodology to combine BDI logics. We develop a set of interaction axioms that can capture static as well as dynamic aspects of the mental states in BDI systems, using Catach's incestual schema G^[a, b, c, d]. Further we exemplify the constraints required on fibring function to capture the semantics of interactions among modalities. The advantages of having a fibred approach is discussed in the final section

    Logic programming as quantum measurement

    Get PDF
    The emphasis is made on the juxtaposition of (quantum~theorem) proving versus quantum (theorem~proving). The logical contents of verification of the statements concerning quantum systems is outlined. The Zittereingang (trembling input) principle is introduced to enhance the resolution of predicate satisfiability problem provided the processor is in a position to perform operations with continuous input. A realization of Zittereingang machine by a quantum system is suggested.Comment: 11 pages, latex, paper accepted for publication in the International Journal of Theoretical Physic

    INCONSISTENCY HANDLING IN MULTIPERSPECTIVE SPECIFICATIONS

    No full text
    Published versio
    corecore