7,813 research outputs found
Query Complexity of Derivative-Free Optimization
This paper provides lower bounds on the convergence rate of Derivative Free
Optimization (DFO) with noisy function evaluations, exposing a fundamental and
unavoidable gap between the performance of algorithms with access to gradients
and those with access to only function evaluations. However, there are
situations in which DFO is unavoidable, and for such situations we propose a
new DFO algorithm that is proved to be near optimal for the class of strongly
convex objective functions. A distinctive feature of the algorithm is that it
uses only Boolean-valued function comparisons, rather than function
evaluations. This makes the algorithm useful in an even wider range of
applications, such as optimization based on paired comparisons from human
subjects, for example. We also show that regardless of whether DFO is based on
noisy function evaluations or Boolean-valued function comparisons, the
convergence rate is the same
Teaching Teachers for the Future (TTF) Project: Development of the TTF TPACK survey instrument
This paper presents a summary of the key findings of the TTF TPACK Survey developed and administered for the Teaching the Teachers for the Future (TTF) Project implemented in 2011. The TTF Project, funded by an Australian Government ICT Innovation Fund grant, involved all 39 Australian Higher Education Institutions which provide initial teacher education. TTF data collections were undertaken at the end of Semester 1 (T1) and at the end of Semester 2 (T2) in 2011. A total of 12881 participants completed the first survey (T1) and 5809 participants completed the second survey (T2). Groups of like-named items from the T1 survey were subject to a battery of complementary data analysis techniques. The psychometric properties of the four scales: Confidence - teacher items; Usefulness - teacher items; Confidence - student items; Usefulness- student items, were confirmed both at T1 and T2. Among the key findings summarised, at the national level, the scale: Confidence to use ICT as a teacher showed measurable growth across the whole scale from T1 to T2, and the scale: Confidence to facilitate student use of ICT also showed measurable growth across the whole scale from T1 to T2. Additional key TTF TPACK Survey findings are summarised
Ion implanted Si:P double-dot with gate tuneable interdot coupling
We report on millikelvin charge sensing measurements of a silicon double-dot
system fabricated by phosphorus ion implantation. An aluminum single-electron
transistor (SET) is capacitively coupled to each of the implanted dots enabling
the charging behavior of the double-dot system to be studied independently of
current transport. Using an electrostatic gate, the interdot coupling can be
tuned from weak to strong coupling. In the weak interdot coupling regime, the
system exhibits well-defined double-dot charging behavior. By contrast, in the
strong interdot coupling regime, the system behaves as a single-dot.Comment: 11 pages, 5 figure
Electron tunnel rates in a donor-silicon single electron transistor hybrid
We investigate a hybrid structure consisting of implanted P
atoms close to a gate-induced silicon single electron transistor (SiSET). In
this configuration, the SiSET is extremely sensitive to the charge state of the
nearby centers, turning from the off state to the conducting state when the
charge configuration is changed. We present a method to measure fast electron
tunnel rates between donors and the SiSET island, using a pulsed voltage scheme
and low-bandwidth current detection. The experimental findings are
quantitatively discussed using a rate equation model, enabling the extraction
of the capture and emission rates.Comment: 10 pages, 3 figure
The variable phase method used to calculate and correct scattering lengths
It is shown that the scattering length can be obtained by solving a Riccati
equation derived from variable phase theory. Two methods of solving it are
presented. The equation is used to predict how long-range interactions
influence the scattering length, and upper and lower bounds on the scattering
length are determined. The predictions are compared with others and it is shown
how they may be obtained from secular perturbation theory.Comment: 7 pages including 3 figure
Bias spectroscopy and simultaneous SET charge state detection of Si:P double dots
We report a detailed study of low-temperature (mK) transport properties of a
silicon double-dot system fabricated by phosphorous ion implantation. The
device under study consists of two phosphorous nanoscale islands doped to above
the metal-insulator transition, separated from each other and the source and
drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers.
Metallic control gates, together with an Al-AlOx single-electron transistor,
were positioned on the substrate surface, capacitively coupled to the buried
dots. The individual double-dot charge states were probed using source-drain
bias spectroscopy combined with non-invasive SET charge sensing. The system was
measured in linear (VSD = 0) and non-linear (VSD 0) regimes allowing
calculations of the relevant capacitances. Simultaneous detection using both
SET sensing and source-drain current measurements was demonstrated, providing a
valuable combination for the analysis of the system. Evolution of the triple
points with applied bias was observed using both charge and current sensing.
Coulomb diamonds, showing the interplay between the Coulomb charging effects of
the two dots, were measured using simultaneous detection and compared with
numerical simulations.Comment: 7 pages, 6 figure
A note on the calculation of the effective range
The closed form of the first order non-linear differential equation that is
satisfied by the effective range within the variable phase formulation of
scattering theory is discussed. It is shown that the conventional method of
determining the effective range, by fitting a numerical solution of the
Schr\"odinger equation to known asymptotic boundary conditions, can be modified
to include the first order contribution of a long range interaction.Comment: 4 page
Allocating the Burdens of Climate Action: Consumption-Based Carbon Accounting and the Polluter-Pays Principle
Action must be taken to combat climate change. Yet, how the costs of climate action should be allocated among states remains a question. One popular answer—the polluter-pays principle (PPP)—stipulates that those responsible for causing the problem should pay to address it. While intuitively plausible, the PPP has been subjected to withering criticism in recent years. It is timely, following the Paris Agreement, to develop a new version: one that does not focus on historical production-based emissions but rather allocates climate burdens in proportion to each state’s annual consumption-based emissions. This change in carbon accounting results in a fairer and more environmentally effective principle for distributing climate duties
Formation of atomic tritium clusters and condensates
We present an extensive study of the static and dynamic properties of systems
of spin-polarized tritium atoms. In particular, we calculate the two-body
|F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via
a Feshbach resonance at a field strength of about 870G. Such a resonance might
be exploited to make and control a Bose-Einstein condensate of tritium in the
|0,0> state. It is further shown that the quartet tritium trimer is the only
bound hydrogen isotope and that its single vibrational bound state is a
Borromean state. The ground state properties of larger spin-polarized tritium
clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure
- …
