4,444 research outputs found

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    Inadequacies in the conventional treatment of the radiation field of moving sources

    Full text link
    There is a fundamental difference between the classical expression for the retarded electromagnetic potential and the corresponding retarded solution of the wave equation that governs the electromagnetic field. While the boundary contribution to the retarded solution for the {\em potential} can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation governing the {\em field} may be neglected only if it diminishes with distance faster than the contribution of the source density in the far zone. In the case of a source whose distribution pattern both rotates and travels faster than light {\em in vacuo}, as realized in recent experiments, the boundary term in the retarded solution governing the field is by a factor of the order of R1/2R^{1/2} {\em larger} than the source term of this solution in the limit that the distance RR of the boundary from the source tends to infinity. This result is consistent with the prediction of the retarded potential that part of the radiation field generated by a rotating superluminal source decays as R−1/2R^{-1/2}, instead of R−1R^{-1}, a prediction that is confirmed experimentally. More importantly, it pinpoints the reason why an argument based on a solution of the wave equation governing the field in which the boundary term is neglected (such as appears in the published literature) misses the nonspherical decay of the field

    How people with dementia and carers understand and react to social functioning changes in mild dementia: a UK-based qualitative study

    Get PDF
    OBJECTIVES: To analyse people with dementia and their family carers' attribution of social changes in dementia and the consequences of these attributions. DESIGN: Qualitative study, using a semi-structured interview guide. Individual interviews continued to theoretical saturation. Two researchers independently analysed interview transcripts. SETTING AND PARTICIPANTS: People with mild dementia and family carers purposively selected from London-based memory services for diverse demographic characteristics to encompass a range of experiences. PRIMARY AND SECONDARY OUTCOMES: Attribution of social changes experienced by the person with dementia and the consequences of these attributions. RESULTS: We interviewed nine people with dementia and nine carers, encompassing a range of age, ethnicity and educational backgrounds.Both groups reported that the person with dementia had changed socially. People with dementia tended to give one or two explanations for social change, but carers usually suggested several. People with dementia were often socially embarrassed or less interested in going out, and they or their relatives' physical illness or fear of falls led to reduced social activity. Carers often attributed not going out to a choice or premorbid personality. Carers found that their relative needed more support to go out than they could give and carers needed time to themselves because of carer stress or other problems from which they shielded the person with dementia. Additionally, there was decreased opportunity to socialise, as people were bereaved of friends and family. Participants acknowledged the direct impact of dementia symptoms on their ability to socially engage but sometimes decided to give up socialising when they knew they had dementia. There were negative consequences from social changes being attributed to factors such as choice, rather than dementia. CONCLUSION: Clinicians should ask about social changes in people with dementia. Explaining that these may be due to dementia and considering strategies to overcome them may be beneficial

    Wormholes and Flux Tubes in 5D Kaluza-Klein Theory

    Get PDF
    In this paper spherically symmetric solutions to 5D Kaluza-Klein theory, with ``electric'' and/or ``magnetic'' fields are investigated. It is shown that the global structure of the spacetime depends on the relation between the ``electrical'' and ``magnetic'' Kaluza-Klein fields. For small ``magnetic'' field we find a wormhole-like solution. As the strength of the ``magnetic'' field is increased relative to the strength of the ``electrical'' field, the wormhole-like solution evolves into a finite or infinite flux tube depending on the strengths of the two fields. For the large ``electric'' field case we conjecture that this solution can be considered as the mouth of a wormhole, with the G55G_{55}, G5tG_{5t} and G5Ï•G_{5\phi} components of the metric acting as the source of the exotic matter necessary for the formation of the wormhole's mouth. For the large ``magnetic'' field case a 5D flux tube forms, which is similar to the flux tube between two monopoles in Type-II superconductors, or the hypothesized color field flux tube between two quarks in the QCD vacuum.Comment: 12 pages, 5 eps.figures, REVTEX, Discussion about null surfaces ammended. References added. To be published in PR

    On the physical meaning of the Unruh effect

    Full text link
    We present simple arguments that detectors moving with constant acceleration (even acceleration for a finite time) should detect particles. The effect is seen to be universal. Moreover, detectors undergoing linear acceleration and uniform, circular motion both detect particles for the same physical reason. We show that if one uses a circularly orbiting electron in a constant external magnetic field as the Unruh--DeWitt detector, then the Unruh effect physically coincides with the experimentally verified Sokolov--Ternov effect.Comment: 7 pages, 0 figures references added, small changes in text. To be published JETP Lett

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic

    Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    Get PDF
    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions
    • …
    corecore