8,414 research outputs found

    The rich frequency spectrum of the triple-mode variable AC And

    Full text link
    Fourier analysis of the light curve of AC And from the HATNet database reveals the rich frequency structure of this object. Above 30 components are found down to the amplitude of 3 mmag. Several of these frequencies are not the linear combinations of the three basic components. We detect period increase in all three components that may lend support to the Pop I classification of this variable.Comment: Poster presented at IAU Symposium 301, "Precision Asteroseismology - Celebration of the Scientific Opus of Wojtek Dziembowski", 19-23 August 2013, Wroclaw, Polan

    A total life prediction model for stress concentration sites

    Get PDF
    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate

    A Nearly Polar Orbit for the Extrasolar Hot Jupiter WASP-79b

    Full text link
    We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated transiting hot Jupiter from the WASP survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. We have used the Rossiter-McLaughlin effect to determine the sky-projected spin-orbit angle to be lambda = -106+19-13 degrees. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet -- the planet being in a nearly polar orbit. WASP-79 is consistent with other stars that have Teff > 6250K and host hot Jupiters in spin-orbit misalignment.Comment: 8 pages, 2 figures, in press ApJL (accepted 2 August 2013

    The HATNet and HATSouth Exoplanet Surveys

    Full text link
    The Hungarian-made Automated Telescope Network (HATNet) has been in operation since 2003, with the key science goal being the discovery and accurate characterization of transiting extrasolar planets (TEPs) around bright stars. Using six small, 11\,cm\ aperture, fully automated telescopes in Arizona and Hawaii, as of 2017 March, it has discovered and accurately characterized 67 such objects. The HATSouth network of telescopes has been in operation since 2009, using slightly larger, 18\,cm diameter optical tubes. It was the first global network of telescopes using identical instrumentation. With three premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth network permits round-the-clock observations of a 128 square arcdegree swath of the sky at any given time, weather permitting. As of this writing, HATSouth has discovered 36 transiting exoplanets. Many of the altogether ~100 HAT and HATSouth exoplanets were the first of their kind. They have been important contributors to the rapidly developing field of exoplanets, motivating and influencing observational techniques, theoretical studies, and also actively shaping future instrumentation for the detection and characterization of such objects.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work

    Rational approximation and arithmetic progressions

    Full text link
    A reasonably complete theory of the approximation of an irrational by rational fractions whose numerators and denominators lie in prescribed arithmetic progressions is developed in this paper. Results are both, on the one hand, from a metrical and a non-metrical point of view and, on the other hand, from an asymptotic and also a uniform point of view. The principal novelty is a Khintchine type theorem for uniform approximation in this context. Some applications of this theory are also discussed

    Image Subtraction Reduction of Open Clusters M35 & NGC 2158 In The K2 Campaign-0 Super-Stamp

    Full text link
    Observations were made of the open clusters M35 and NGC 2158 during the initial K2 campaign (C0). Reducing these data to high-precision photometric time-series is challenging due to the wide point spread function (PSF) and the blending of stellar light in such dense regions. We developed an image-subtraction-based K2 reduction pipeline that is applicable to both crowded and sparse stellar fields. We applied our pipeline to the data-rich C0 K2 super-stamp, containing the two open clusters, as well as to the neighboring postage stamps. In this paper, we present our image subtraction reduction pipeline and demonstrate that this technique achieves ultra-high photometric precision for sources in the C0 super-stamp. We extract the raw light curves of 3960 stars taken from the UCAC4 and EPIC catalogs and de-trend them for systematic effects. We compare our photometric results with the prior reductions published in the literature. For detrended, TFA-corrected sources in the 12--12.25 Kp\rm K_{p} magnitude range, we achieve a best 6.5 hour window running rms of 35 ppm falling to 100 ppm for fainter stars in the 14--14.25 Kp \rm K_{p} magnitude range. For stars with Kp>14\rm K_{p}> 14, our detrended and 6.5 hour binned light curves achieve the highest photometric precision. Moreover, all our TFA-corrected sources have higher precision on all time scales investigated. This work represents the first published image subtraction analysis of a K2 super-stamp. This method will be particularly useful for analyzing the Galactic bulge observations carried out during K2 campaign 9. The raw light curves and the final results of our detrending processes are publicly available at \url{http://k2.hatsurveys.org/archive/}.Comment: Accepted for publication in PASP. 14 pages, 5 figures, 2 tables. Light curves available from http://k2.hatsurveys.org/archive

    Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems.

    Get PDF
    Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions
    corecore