4,926 research outputs found

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    Genuine Dyons in Born-Infeld Electrodynamics

    Get PDF
    Study of magnetic monopoles in the original version of Born-Infeld (BI) electrodynamics is performed. It then is realized that interesting new physics emerge and they include exotic behavior of radial electric monopole field such as its regularity as r0r\to 0 and its changing behavior with the absence or presence of the radial magnetic monopole field. This last point has been interpreted as the manifestation of the existence of point-like dyons in abelian BI theory. Two pieces of clear evidences in favor of this dyon interpretation are provided. It is also demonstrated that despite these unique features having no analogues in standard Maxwell theory, the cherished Dirac quantisation condition remains unchanged. Lastly, comments are given concerning that dyons found here in the original version of BI electrodynamics should be distinguished from the ones with the same name or BIons being studied in the recent literature on D-brane physics.Comment: 19 pages, Revtex, references added, no other change

    A technique for optimal temperature estimation for modeling sunrise/sunset thermal snap disturbance torque

    Get PDF
    A predictive temperature estimation technique which can be used to drive a model of the Sunrise/Sunset thermal 'snap' disturbance torque experienced by low Earth orbiting spacecraft is described. The twice per orbit impulsive disturbance torque is attributed to vehicle passage in and out of the Earth's shadow cone (umbra), during which large flexible appendages undergo rapidly changing thermal conditions. Flexible members, in particular solar arrays, experience rapid cooling during umbra entrance (Sunset) and rapid heating during exit (Sunrise). The thermal 'snap' phenomena has been observed during normal on-orbit operations of both the LANDSAT-4 satellite and the Communications Technology Satellite (CTS). Thermal 'snap' has also been predicted to be a dominant source of error for the TOPEX satellite. The fundamental equations used to model the Sunrise/Sunset thermal 'snap' disturbance torque for a typical solar array like structure will be described. For this derivation the array is assumed to be a thin, cantilevered beam. The time varying thermal gradient is shown to be the driving force behind predicting the thermal 'snap' disturbance torque and therefore motivates the need for accurate estimates of temperature. The development of a technique to optimally estimate appendage surface temperature is highlighted. The objective analysis method used is structured on the Gauss-Markov Theorem and provides an optimal temperature estimate at a prescribed location given data from a distributed thermal sensor network. The optimally estimated surface temperatures could then be used to compute the thermal gradient across the body. The estimation technique is demonstrated using a typical satellite solar array

    Single and double slit scattering of wave packets

    Full text link
    The scattering of wave packets from a single slit and a double slit with the Schr\"odinger equation, is studied numerically and theoretically. The phenomenon of diffraction of wave packets in space and time in the backward region, previously found for barriers and wells, is encountered here also. A new phenomenon of forward diffraction that occurs only for packets thiner than the slit, or slits, is calculated numerically as well as, in a theoretical approximation to the problem. This diffraction occurs at the opposite end of the usual diffraction phenomena with monochromatic waves.Comment: Latex format, 35 pages, 15 eps (some colored) figure

    Polarization and angular distribution of the radiation emitted in laser-assisted recombination

    Full text link
    The effect of an intense external linear polarized radiation field on the angular distributions and polarization states of the photons emitted during the radiative recombination is investigated. It is predicted, on symmetry grounds, and corroborated by numerical calculations of approximate recombination rates, that emission of elliptically polarized photons occurs when the momentum of the electron beam is not aligned to the direction of the oscillating field. Moreover, strong modifications to the angular distributions of the emitted photons are induced by the external radiation field.Comment: 5 pages, 3 figure

    Seasat data utilization project

    Get PDF
    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer

    Perfect imaging with positive refraction in three dimensions

    Get PDF
    Maxwell's fish eye has been known to be a perfect lens within the validity range of ray optics since 1854. Solving Maxwell's equations we show that the fish-eye lens in three dimensions has unlimited resolution for electromagnetic waves

    An analytic model of rotationally inelastic collisions of polar molecules in electric fields

    Full text link
    We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the "shape" of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne-OCS(1Σ^{1}\Sigma) and Ar-NO(2Π^2\Pi) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)] demonstrates the model's ability to qualitatively explain the field dependence of all the scattering features observed

    Mie scattering by a charged dielectric particle

    Full text link
    We study for a dielectric particle the effect of surplus electrons on the anomalous scattering of light arising from the transverse optical phonon resonance in the particle's dielectric constant. Excess electrons affect the polarizability of the particle by their phonon-limited conductivity, either in a surface layer (for negative electron affinity) or the conduction band (for positive electron affinity). We demonstrate that surplus electrons shift an extinction resonance in the infrared. This offers an optical way to measure the charge of the particle and thus to use it in a plasma as a minimally invasive electric probe.Comment: 5 pages, 5 figures, accepted manuscrip
    corecore