57 research outputs found

    Unique Implementation in Auctions and in Public Goods Problems

    Get PDF
    Des conditions nouvelles sont prĂ©sentĂ©es, assurant l’existence de mĂ©canismes d’enchĂšres ou de production de biens publics menant Ă  un Ă©quilibre unique ou essentiellement unique, lorsque les prĂ©fĂ©rences des agents sont quasi linĂ©aires. Ces conditions portent exclusivement sur la croyance des agents.We present new conditions that guarantee the existence of mechanism with a unique or essentially unique equilibrium in auction and public goods problems with quasi-linear utility functions. These conditions bear only on the information structures of the agents

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations

    Full text link
    We consider an active scalar equation that is motivated by a model for magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast, the critically diffusive equation is well-posed. In this case we give an example of a steady state that is nonlinearly unstable, and hence produces a dynamo effect in the sense of an exponentially growing magnetic field.Comment: We have modified the definition of Lipschitz well-posedness, in order to allow for a possible loss in regularity of the solution ma

    Time scales separation for dynamo action

    Get PDF
    The study of dynamo action in astrophysical objects classically involves two timescales: the slow diffusive one and the fast advective one. We investigate the possibility of field amplification on an intermediate timescale associated with time dependent modulations of the flow. We consider a simple steady configuration for which dynamo action is not realised. We study the effect of time dependent perturbations of the flow. We show that some vanishing low frequency perturbations can yield exponential growth of the magnetic field on the typical time scale of oscillation. The dynamo mechanism relies here on a parametric instability associated with transient amplification by shear flows. Consequences on natural dynamos are discussed

    Existence of global strong solutions to a beam-fluid interaction system

    Get PDF
    We study an unsteady non linear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoleastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain in particular that contact between the viscoleastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, but also of existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure

    Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids

    Full text link
    We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument

    The Navier wall law at a boundary with random roughness

    Full text link
    We consider the Navier-Stokes equation in a domain with irregular boundaries. The irregularity is modeled by a spatially homogeneous random process, with typical size \eps \ll 1. In a parent paper, we derived a homogenized boundary condition of Navier type as \eps \to 0. We show here that for a large class of boundaries, this Navier condition provides a O(\eps^{3/2} |\ln \eps|^{1/2}) approximation in L2L^2, instead of O(\eps^{3/2}) for periodic irregularities. Our result relies on the study of an auxiliary boundary layer system. Decay properties of this boundary layer are deduced from a central limit theorem for dependent variables

    Uniform regularity for the Navier-Stokes equation with Navier boundary condition

    Full text link
    We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞L^\infty. This allows to get the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co
    • 

    corecore