Abstract

We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in LL^\infty. This allows to get the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument

    Similar works

    Full text

    thumbnail-image

    Available Versions