882 research outputs found

    Low frequency quasi-normal modes of AdS black holes

    Get PDF
    We calculate analytically low frequency quasi-normal modes of gravitational perturbations of AdS Schwarzschild black holes in dd dimensions. We arrive at analytic expressions which are in agreement with their counterparts from linearized hydrodynamics in Sd2×RS^{d-2}\times \mathbb{R}, in accordance with the AdS/CFT correspondence. Our results are also in good agreement with results of numerical calculations.Comment: 14 page

    Drag Force in a Charged N=4 SYM Plasma

    Full text link
    Following recent developments, we employ the AdS/CFT correspondence to determine the drag force exerted on an external quark that moves through an N=4 super-Yang-Mills plasma with a non-zero R-charge density (or, equivalently, a non-zero chemical potential). We find that the drag force is larger than in the case where the plasma is neutral, but the dependence on the charge is non-monotonic.Comment: 16 pages, 1 eps figure; v2: references added, typos fixed; v3: more general ansatz, new nontrivial solution obtained, nonmonotonicity of the drag force made explicit in new figure, version to appear in JHE

    The Gregory-Laflamme instability for the D2-D0 bound state

    Full text link
    The D2-D0 bound state exhibits a Gregory-Laflamme instability when it is sufficiently non-extremal. If there are no D0-branes, the requisite non-extremality is finite. When most of the extremal mass comes from D0-branes, the requisite non-extremality is very small. The location of the threshhold for the instability is determined using a local thermodynamic analysis which is then checked against a numerical analysis of the linearized equations of motion. The thermodynamic analysis reveals an instability of non-commutative field theory at finite temperature, which may occur only at very long wavelengths as the decoupling limit is approached.Comment: 19 pages, Latex2e. v2: two refs added. v3: clearer exposition in section

    Heavy flavor diffusion in weakly coupled N=4 Super Yang-Mills theory

    Full text link
    We use perturbation theory to compute the diffusion coefficient of a heavy quark or scalar moving in N=4 SU(N_c) Super Yang-Mills plasma to leading order in the coupling and the ratio T/M<<1. The result is compared both to recent strong coupling calculations in the same theory and to the corresponding weak coupling result in QCD. Finally, we present a compact and simple formulation of the Lagrangian of our theory, N=4 SYM coupled to a massive fundamental N=2 hypermultiplet, which is well-suited for weak coupling expansions.Comment: 22 pages, 4 figures; v3: error corrected in calculations, figures and discussion modified accordingl

    Even-denominator fractional quantum Hall physics in ZnO

    Get PDF
    The fractional quantum Hall (FQH) effect emerges in high-quality two-dimensional electron systems exposed to a magnetic field when the Landau-level filling factor, ν_e, takes on a rational value. Although the overwhelming majority of FQH states have odd-denominator fillings, the physical properties of the rare and fragile even-denominator states are most tantalizing in view of their potential relevance for topological quantum computation. For decades, GaAs has been the preferred host for studying these even-denominator states, where they occur at ν_e = 5/2 and 7/2. Here we report an anomalous series of quantized even-denominator FQH states outside the realm of III–V semiconductors in the MgZnO/ZnO 2DES electron at ν_e = 3/2 and 7/2, with precursor features at 9/2; all while the 5/2 state is absent. The effect in this material occurs concomitantly with tunability of the orbital character of electrons at the chemical potential, thereby realizing a new experimental means for investigating these exotic ground states

    Black Branes in a Box: Hydrodynamics, Stability, and Criticality

    Full text link
    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.Comment: 23 pages, 3 figures. v2: added comments on first-order phase transitio
    corecore