563 research outputs found

    Changes in global agriculture: A framework for diagnosing ecosystem effects and identifying response options

    Full text link

    Comment on ``Reduction of static field equation of Faddeev model to first order PDE'', arXiv:0707.2207

    Get PDF
    The authors of the article Phys. Lett. B 652 (2007) 384, (arXiv:0707.2207), propose an interesting method to solve the Faddeev model by reducing it to a set of first order PDEs. They first construct a vectorial quantity α\bm \alpha , depending on the original field and its first derivatives, in terms of which the field equations reduce to a linear first order equation. Then they find vectors α1\bm \alpha_1 and α2\bm \alpha_2 which identically obey this linear first order equation. The last step consists in the identification of the αi\bm \alpha_i with the original α\bm \alpha as a function of the original field. Unfortunately, the derivation of this last step in the paper cited above contains an error which invalidates most of its results

    Plant size and neighbourhood characteristics influence survival and growth in a restored ex‐agricultural ecosystem

    Get PDF
    Restoring woody vegetation on degraded agricultural land is a widespread and common ecological restoration practice. However, highly variable plant survival and growth limit outcomes for many projects. Inconsistent reporting and monitoring of projects mean that an assessment of the relative importance of community-assembly processes is limited, particularly over longer timescales. We use 7 years of monitoring data of nearly 2000 native trees and shrubs in a restoration project on ex-agricultural land in south-western Australia to test the potential effects of facilitation or competition from neighbouring plants, as well as look for patterns in their interaction with the attributes of individuals and species traits. Overall, plant size was the strongest single predictor of survival and incremental growth. Individual plants in neighbourhoods with higher inter-generic basal area were more likely to survive, with this effect strongest in smaller individuals. When plants were larger, they were less likely to grow when in neighbourhoods with high intra-generic basal area. Taller-growing plants (higher species maximum height) were more likely to survive when individuals were small (basal area of 1–10 cm2), compared with shorter growing plants. Growth was also more likely in taller-growing plants, and this relationship increased with the size of the individual. Recruitment was very low, with just 148 new recruits recorded across the 42 plots over 7 years. Maximizing the growth of plants in restorations in the early stages may promote survival and growth in the longer term. We also demonstrate that increased levels of inter-generic neighbouring plants may improve individual plant survival in the restoration of ex-agricultural land. As a result, we suggest tailoring direct-seeding methods to minimize clustering of congeneric individuals. We also highlight the need to find means of promoting recruitment for the long-term sustainability of restoration efforts

    Breakdown of Varvenne scaling in (AuNiPdPt)1x_{1-x} Cux_{x} high-entropy alloys

    Get PDF
    The compositional dependence of the yield strength σy_{y} has been studied for a series of polycrystalline (AuNiPdPt)1x_{1-x}Cux_{x} alloys by means of compression tests. σy_{y} is found to decrease linearly with increasing Cu concentration. This behaviour is in contradiction to the generalised theory for solid solution strengthening in concentrated solid solutions provided by Varvenne et al. [1]. A breakdown of the scaling behaviour is found as σy should be non-linear and slightly increasing when modifying the composition from AuNiPdPt to AuCuNiPdPt

    Origins of strength and plasticity in the precious metal based High-Entropy Alloy AuCuNiPdPt

    Get PDF
    The precious metal based High-Entropy Alloy (HEA) AuCuNiPdPt crystallises in a face-centred cubic structure and is single phase without chemical ordering after homogenisation. However, a decomposition is observed after annealing at intermediate temperatures. This HEA shows extended malleability during cold work up to a logarithmic deformation degree of φ=2.42. The yield strength ranges from 820 MPa in the recrystallised state to 1170 MPa when strain hardened by cold working with a logarithmic deformation degree of φ > 0.6. This work hardening behaviour is traced back to a steep increase in dislocation density as well as in deformation twinning occurring at low strain. The microstructure and the mechanical properties of AuCuNiPdPt are assessed in detail by various methods. EBSD and TEM analyses reveal mechanical twinning as an important deformation mechanism. The high strength in the recrystallised state is evaluated and found to originate predominantly upon solid solution strengthening
    corecore