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Abstract

The authors of the article [M. Hirayama, C.-G. Shi, Phys. Lett. B 652 (2007) 384, arXiv: 0707.2207] propose an interesting method to solve
the Faddeev model by reducing it to a set of first order PDEs. They first construct a vectorial quantity α, depending on the original field and its
first derivatives, in terms of which the field equations reduce to a linear first order equation. Then they find vectors α1 and α2 which identically
obey this linear first order equation. The last step consists in the identification of the αi with the original α as a function of the original field.
Unfortunately, the authors overlook a constraint implied by their construction, which invalidates most of their subsequent results.
© 2008 Elsevier B.V. All rights reserved.
The Faddeev model [1,2] (also known as the Skyrme–
Faddeev model or the Faddeev–Niemi model) is a nonlinear
field theory in 3 + 1 dimensions which is known to support
knotted solitons, both from an analysis of its topology and sta-
bility [3], and from numerical calculations [4–7]. Apart from
their existence, however, the analytic information on these soli-
tons is rather sparse.

In the Letter [8], the authors proposed a method to par-
tially solve the static field equations by effectively reducing
them to a set of first order equations. Unfortunately, that Let-
ter contains an error which invalidates most of its results. In
the sequel we briefly review the construction of [8], point out
the error and demonstrate that from their (incorrect) results,
incorrect conclusions may be drawn (i.e., one may construct
“solutions” which are well known not to be solutions of the
Faddeev model).
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The target space of the Faddeev model is the two-sphere and
may be described either by a three-component unit vector field
�n or by a complex field u via stereographic projection. The en-
ergy functional for static configurations of the Faddeev model
(in terms of the complex field u) is

(1)E[u, ū] =
∫

d3x (c2ε2 + c4ε4),

with

(2)ε2 = 4

(1 + |u|2)2

(∇u · ∇u∗),
(3)ε4 = −8

(∇u × ∇u∗)2

(1 + |u|2)4
.

Following the conventions of [8], we now assume a choice of
length units such that c2 = 4c4 and re-express u by its modulus
and phase,

(4)u = ReiΦ,

with real functions R and Φ . Then the static field equations can
be written like

(5)∇ · α + iβ · α = 0
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and its complex conjugate, where

(6)α ≡ ∇u∗

1 + R2
− ∇u∗ × (∇u × ∇u∗)

(1 + R2)3

and

(7)β ≡ −i
u∗∇u − u∇u∗

1 + R2
= 2R2

1 + R2
∇Φ.

Eq. (5) is the starting point for the analysis in Ref. [8]. Next, the
authors observe that the vectors

α1 = (∇R × ∇ρ) exp

(
−2iΦ

R2

1 + R2

)
,

(8)α2 = (∇Φ × ∇μ)

identically obey Eq. (5) for arbitrary complex functions ρ

and μ. Due to the linearity of Eq. (5), also the sum α1 + α2
obeys this equation.

For a further analysis, the authors then regard ρ and μ as
functions of R, Φ and a third function ζ which is unknown at
this moment but should obey ∂(R,Φ,ζ )

∂(x1,x2,x3)
�= 0 such that the three

functions R, Φ , ζ may be used as a new system of curvilinear
coordinates. The idea is then to expand the vectors α and αi

into the basis

(9)∇R, R∇Φ, R∇R × ∇Φ

and to compare coefficients. For the gradient of ζ the authors
assume

(10)∇ζ = γ∇R × R∇Φ + ξ∇R + Rη∇Φ,

where γ , ξ and η are, at this moment, unconstrained real func-
tions. This assumption is the error we announced at the be-
ginning. The expansion into the basis (9) with unconstrained
coefficient functions is only true for a general vector field. How-
ever, the l.h.s. of Eq. (10) is a gradient and, therefore, obeys
∇ × ∇ζ = 0. Applying this condition to the r.h.s. of the same
equation produces constraints which the coefficient functions
γ, ξ and η have to obey. Concretely, in an index notation the
constraints are

(γRRkΦj )j − (γRRjΦk)j

(11)+ εkjl(ξjRl + RηjΦl + ηRjΦl) = 0,

where the subindices mean partial derivatives. Obviously, the
constraints contain first derivatives of the functions γ, ξ , η, as
well as second derivatives of R and Φ , and it is not known how
to expand these expressions into the basis (9). In fact, coeffi-
cient functions γ , ξ , η which obey the constraints (11) cannot
be found unless the basis vector fields (9) are known. As this
point is crucial for our criticism, we demonstrate it in some
more detail in Appendix A. This problem invalidates all the sub-
sequent analysis of Ref. [8], where the comparison of α with
α1 + α2 essentially leads to a system of linear equations. All
conditions derived in Ref. [8] stem from this linear system of
equations (Eqs. (32)–(34) of Ref. [8]) and from the integrabil-
ity conditions on the arbitrary functions μ and ρ (Eqs. (46),
(47) of Ref. [8]).

Let us illustrate how a strict application of the results of
Ref. [8] leads to wrong conclusions, demonstrating thereby the
incorrectness of these results by a reductio ad absurdum. Con-
cretely, we will show that using their results one may derive
easily “solutions” of the Faddeev model which are well known
not to be solutions at all. For this purpose, we first summarize
the (incorrect) final result of Ref. [8]. As said, they expand the
vectors α and α1 + α2 into the basis (9) and compare coeffi-
cients. This leads to three complex (i.e., six real) equations for
the coefficients. Four of these six equations provide a linear sys-
tem of equations for the three quantities

(12)p = (∇R)2,

(13)q = ∇R · R∇Φ,

(14)r = (R∇Φ)2,

see Eqs. (33), (34) of Ref. [8]. The solution of this linear sys-
tem allows to express the three quantities p, q and r in terms
of ζ derivatives of μ and ρ (multiplied by some given coef-
ficients depending on R, Φ). As μ and ρ are arbitrary and
complex, this allows to express the solution by four arbitrary
real functions, which are conveniently abbreviated by the let-
ters a, b, c, d (their precise form is given in Eqs. (35)–(38) of
Ref. [8]). As the system consists of four equations for only
three unknowns, there must exist a linear dependency in the
linear system, i.e., a relation among the four real functions
a, b, c, d . Concretely, the relation is a = d . Further, the func-
tions a, b, c, d obey some inequalities which are related to the
definition of the quantities p, q and r . See Eqs. (42) and (43) of
Ref. [8].

There remains a third complex equation (two more real
equations), see Eq. (32) of Ref. [8]. This equation may be re-
expressed as a system of two real linear first order partial dif-
ferential equations with (R,Φ, ζ ) as independent variables, and
(γ, ξ, η, a, b, c) as dependent variables (see Eq. (54) of Ref. [8]
for the precise form of these PDEs).

There are no more conditions in Ref. [8], as is explicitly
stated in that Letter (“We have thus found the relation that
γ, ξ, η, a, b and c should satisfy. It consists of two partial dif-
ferential equations of first order”.). Therefore, any choice of the
six functions (γ, ξ, η, a, b, c) obeying the two linear first order
PDEs (Eq. (54) of Ref. [8]) should provide a static solution for
the Faddeev model. More precisely, it directly provides a solu-
tion for the three quantities

(15)p = (∇R)2 = S(R,Φ, ζ ),

(16)q = ∇R · R∇Φ = T (R,Φ, ζ ),

(17)r = (R∇Φ)2 = U(R,Φ, ζ ),

(i.e., it provides the r.h.s. of these equations), from which R and
Φ still have to be calculated.

Now, in order to continue with our demonstration of the in-
correctness of the procedure just described, let us make some
simplifying assumptions for the functions a, b, c. Concretely,
we assume a = 0 and b = c, which immediately leads to

(18)p = r = [
b
(
1 + R2)]−1

,

(19)q = 0,
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see Eqs. (39)–(41) of Ref. [8]. We emphasize that our sim-
plifying assumptions are fully compatible with the conditions
derived in Ref. [8], i.e., both with the inequalities of Eq. (43)
of [8] and with the PDEs of Eq. (54) of that reference. In fact,
the system of two linear first order PDEs (Eq. (54) of Ref. [8])
decouples under these assumptions. Next, we make the fur-
ther (fully compatible!) simplifying assumption that γ = const.,
then the l.h.s. of Eq. (54) of Ref. [8] is zero. The resulting two
first order differential equations are now ordinary ones and are
just the defining equations for the (up to now, arbitrary) func-
tions ξ and η, respectively, for a given but completely arbitrary
function b. This implies that any solution to the equations

(20)(∇R)2 = (R∇Φ)2,

(21)∇R · R∇Φ = 0

(the so-called complex eikonal equation) should be a solution to
the field equations of the Faddeev model (due to the arbitrari-
ness of the function b). But this conclusion is certainly wrong.
It is, for instance, well known that the ansatz in toroidal coordi-
nates

(22)u = f (η̃)einξ̃+imϕ̃

provides solutions to the complex eikonal equation for arbitrary
integers m and n, see [9], [10] (we use tildes for the torus co-
ordinates in order not to confuse them with the functions intro-
duced above; for the conventions used for the torus coordinates,
we refer, e.g., to [9]).

On the other hand, it is well known that the ansatz (22) in
toroidal coordinates is incompatible with the field equations of
the Faddeev model, see, e.g., [11]. We emphasize again that in
our reductio ad absurdum we strictly followed the prescription
provided in Ref. [8] in that we obeyed all conditions derived
there and only used further simplifying assumptions which are
completely compatible with the conditions of Ref. [8].

In short, we have demonstrated that the analysis of Ref. [8]
contains an error, and that the use of the (incorrect) results of
that Letter may lead to wrong conclusions about solutions of
the Faddeev model, which was the purpose of this comment.

We think, nevertheless, that the starting point of the Let-
ter [8], i.e., the linear equation (5) and the observation that it
is identically obeyed by the family of vectors of Eq. (8), is in-
teresting and deserves further investigation.
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Appendix A

Here we demonstrate that there does not exist a choice for
the coefficient functions γ, ξ and η which obeys the constraints
(11) unless the basis vectors (9) (and, therefore, the sought af-
ter soliton solution of the original field equations) are known
explicitly. Following Ref. [8], we assume that γ, ξ and η are
functions of the variables R, Φ and ζ , and we re-express the
partial derivatives accordingly, i.e.,

(A.1)γj = γRRj + γΦΦj + γζ ζj ,

etc., and we use expression (10) for ζj . Then we find after some
calculation that the constraints (11) can be written like follows,

R

(
γR + γζ ξ − ξζ γ + γ

R

)
(RkRjΦj − ΦkRjRj )

+ R2(γΦ + γζ η − ηζ γ )(RkΦjΦj − ΦkRjΦj )

+ εkjlRjΦl(η + RηR + Rηζ ξ − ξΦ − Rξζ η)

(A.2)+ γR∂j (RkΦj − RjΦk) = 0.

The problem is with the last term ∂j (RkΦj −RjΦk). As long as
R and Φ are not known, the expansion of this term into the basis
(9) is completely arbitrary, and therefore the constraints on the
coefficient functions γ, ξ and η cannot be imposed. The choice
γ = 0, which would make this last term disappear, is forbidden
because then ∇ζ would be a linear combination of ∇R and ∇Φ ,
and the condition ∂(R,Φ,ζ )

∂(x1,x2,x3)
�= 0 would be violated.
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