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Abstract

1. Restoringwoodyvegetationondegradedagricultural land is awidespreadand com-

mon ecological restoration practice. However, highly variable plant survival and

growth limit outcomes for many projects. Inconsistent reporting and monitoring

of projects mean that an assessment of the relative importance of community-

assembly processes is limited, particularly over longer timescales.

2. We use 7 years of monitoring data of nearly 2000 native trees and shrubs in a

restoration project on ex-agricultural land in south-western Australia to test the

potential effects of facilitation or competition from neighbouring plants, as well as

look for patterns in their interaction with the attributes of individuals and species

traits.

3. Overall, plant size was the strongest single predictor of survival and incremen-

tal growth. Individual plants in neighbourhoods with higher inter-generic basal

area were more likely to survive, with this effect strongest in smaller individuals.

When plants were larger, they were less likely to grow when in neighbourhoods

with high intra-generic basal area. Taller-growing plants (higher species maximum

height) were more likely to survive when individuals were small (basal area of 1–

10 cm2), compared with shorter growing plants. Growth was also more likely in

taller-growing plants, and this relationship increasedwith the size of the individual.

Recruitment was very low, with just 148 new recruits recorded across the 42 plots

over 7 years.

4. Maximizing the growth of plants in restorations in the early stages may promote

survival and growth in the longer term. We also demonstrate that increased lev-

els of inter-generic neighbouring plantsmay improve individual plant survival in the

restoration of ex-agricultural land. As a result, we suggest tailoring direct-seeding

methods to minimize clustering of congeneric individuals. We also highlight the

need to find means of promoting recruitment for the long-term sustainability of

restoration efforts.
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1 INTRODUCTION

Ecological restoration targets continue to rise as we enter what the

United Nations has declared the ‘Decade on Ecological Restoration’

(Fagan et al., 2020; GPFLR, 2019). Linking ecological theory to restora-

tion practice to maximize desired outcomes will be a vital component

in meeting these targets (Lindenmayer, 2020). One barrier to effec-

tively linking theory to practice is the lack of sufficient planning, prepa-

ration and on-going monitoring of ecological restoration projects, par-

ticularly those at the landscape scale (Freudenberger, 2018; Linden-

mayer & Likens, 2018). Moreover, the importance of the spatial con-

text of an individual plant for its performance is infrequently investi-

gated (Perring, Standish, et al., 2015; though see Canham et al., 2006;

Charles et al., 2018;Gómez-Aparicio, 2009; Ibáñez&Rodríguez, 2020),

further widening this gap between theory and practice. By overlook-

ing the interactions of individuals through time, our understanding of

the importance of community assembly dynamics in restoration may

be obstructed (Coulson, 2020).

Thedensities and compositionof planted species aredirectlymanip-

ulated in restoration projects, thus understanding how survival and

growthof individual plantsmaybemaximized throughdifferent assem-

blages is a highly practical means of enhancing restoration outcomes.

Further, deepening the understanding of keymechanisms driving com-

munity assembly remains at the forefront of ecology more broadly

(Lasky et al., 2014). The species identity, density, proximity and the

size of neighbouring plants are important in understanding interac-

tions between individuals (Chen et al., 2019; Harms et al., 2000; John-

son et al., 2012; Potvin & Dutilleul, 2009). Ecological theory predicts

that competition from intraspecific neighbours shouldbe stronger than

from interspecific neighbours (Adler et al., 2018). Indeed, results from

ecological syntheses show that interspecific competition is generally

weaker than intraspecific competition in plant communities (Adler

et al., 2018), though the negative influence of intraspecific neighbours

is not universal (Goldberg&Barton, 1992;Gurevitch et al., 1992; Lasky

et al., 2014). In a restoration setting, facilitation by nurse plants (Cas-

tro et al., 2002, 2004; Padilla & Pugnaire, 2006; Ren et al., 2008) can

be a significant process shaping community assembly—particularly for

woody plants facing water stress (Brooker et al., 2008; Cramer et al.,

2008;Gómez-Aparicio, 2009; Ibáñez&Rodríguez, 2020; Padilla&Pug-

naire, 2006). This prediction of facilitation by nurse plants suggests

that in stressful environments there are benefits to growing close to

other plants, including increasing water and nutrient availability in

the soil, protection from herbivory and physical protection from other

damaging processes such as wind exposure (Padilla & Pugnaire, 2006;

Stachowicz, 2001). However, the density of plants in direct-seeded

restoration projects often far exceeds natural stem densities (Perring,

Jonson, et al., 2015), which may result in detrimental overcrowding

(Dwyer & Mason, 2018). Beyond competition for light and water, the

increaseddensities of closely related speciesmaycompound thepreva-

lence of natural enemies (pathogens, herbivores), increasing mortality

(Comita et al., 2014; Mangan et al., 2010). Therefore, there is clearly a

risk that high densities of stems in restoration projects may negate any

nurse plant benefit, particularly where neighbouring plants are closely

related to the focal stem.

Attributes of individual seedlings can have a major influence on

survival and growth in restoration projects (Andivia et al., 2021; Gar-

diner et al., 2019; Grossnickle, 2012). Planted seedlings of subtropical

rainforest species with larger initial sizes were found to accrue larger

increments of growth (Gardiner et al., 2019). Tuttle et al. (1988) found

that larger seedlings survived at higher rates under non-adverse condi-

tions, but under adverse conditions, an increase in seedling height had

a negative effect of seedling survival. Additionally, demographic rela-

tionships between both functional traits and neighbourhood dynamics

are likely to be size dependent (Prado-Junior et al., 2017). Incorporat-

ing size alongside key functional traits is crucial for accurate investiga-

tions of survival and growth (Falster et al., 2018), though until recently

has been rarely tested empirically (Falster et al., 2018; Gibert et al.,

2016).

Two key functional traits relating to early growth are a species’

maximum attainable height (‘maximum height’) and seed mass (Fal-

ster &Westoby, 2005; Kunstler et al., 2016; Moles &Westoby, 2004).

Shorter plants are thought to trade off maximum height for faster

early-stage growth rates to compete with taller but slower growing

plants, by growing and reaching reproductive maturity sooner (Falster

&Westoby, 2005). Seedlings from larger seeds, through their increased

energy store, experience higher survival (Moles & Westoby, 2004). In

direct-seeding restoration projects such as in the present study, larger

seeded species have been shown to have the highest establishment

rates (Cecconet al., 2016; Palma&Laurance, 2015).However, the influ-

ence of this competitive advantage beyond the establishment stage is

less clear (Moles & Westoby, 2004). We incorporate these key traits

to investigate their relevance to growth and survival in a restoration

setting.

Understanding the influence of plant size, species-level traits

and neighbouring plants on individual plant survival and growth in

restorations will increase our capacity to deliver desired restora-

tion outcomes. Such studies are rarely possible given the limited

resources allocated to monitoring of restoration projects beyond ini-

tial establishment, meaning that tracking the fate and growth of

the same individuals through time is not often logistically possible

(Coulson, 2020; Lindenmayer & Likens, 2018). We use 7 years of

monitoring of individual stems in a landscape-scale restoration of
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ex-agricultural land in south-western Australia to address the follow-

ing questions:

1. Howdo individual plant size, neighbourhoodand species-level func-

tional traits influence survival and growth during the restoration of

woody vegetation on ex-agricultural land?

2. Howare the influence of plant neighbourhood andmaximumheight

on survival and growth modulated by the size of the individual

plant?

2 MATERIALS AND METHODS

2.1 Study area

The study site is located approximately 16 km southwest of Jerra-

mungup, Western Australia, between the Fitzgerald River National

Park and Stirling Range National Park (−34◦ 4ʺ 52.2ʹ S, 118◦ 51ʺ 18.8ʹ
E). The area receives approximately 400 mm of annual rainfall, with an

average temperature of approximately 16◦C. The local reference com-

munity includes tall eucalypt mallee, mallee heath, open mallee heath,

low eucalypt woodland and tall woodland systems (Perring, Jonson,

et al., 2015).

The 250-ha restoration site was direct seeded in mid-2008 with a

diversity of seed mixes based on seven reference woodland communi-

ties informed by a soil and landscape survey (Jonson, 2010). Therefore,

species composition and amounts of species’ seeds varied across the

site according to soil type and landscape position. As the project was

part of a carbon capture contract, to ensure adequate biomass accumu-

lation, a single species,Eucalyptus occidentalis, was planted as tubestock

at adensityof350 stems/ha. Inourdata set,E.occidentalis comprises79

individuals, whereas the 12 other seeded species of Eucalyptus com-

prise 414 individuals (Appendix S1, Table S1).

Across the site, established seedlingdensitieswithin the first 3 years

ranged approximately 1500—4300 stems/ha (Jonson, 2010). Young

seedlings at the site were monitored prior to the current study and

were shown to face strong establishment bottlenecks in the first sum-

mer after seeding (2008/09; Hallett et al., 2014). At 5 years, across the

eight major vegetation associations, seeded and planted species range

from23 to 49 species (median 25) (Perring, Jonson, et al., 2015). Ongo-

ingmonitoring occurred in 42 plots, either 10m×14mor 20m×14m.

Both plot sizes consisted of 10 seeded rows spaced approximately

1.4mapart. The larger plotswere intended to sample sufficient individ-

uals in more sparsely established areas. All living and dead stems were

initially measured in 2011 (Hallett et al., 2014) and living stems were

then monitored annually from 2013 to 2018 either at 10 cm or 1.3 m

above ground level. Stems were measured to the nearest mm in diam-

eter using callipers. All stems were individually identified along fixed

transects within each of 10 planted rows in each plot (Perring, Jonson,

et al., 2015). All surveys were conducted with the permission of the

landmanagers, Greening Australia.

Species maximum height was obtained for each species from the

Western Australian online flora database ‘FloraBase’ (Western Aus-

tralian Herbarium, 2020). These values are averages for each species

across the varying range of conditions inwhich they occur.Wheremax-

imum height estimates have two values (e.g. “2 m–10 m (−15 m)”), we

took the lowermore conservative estimate.

Seedmasswasobtained from theSeed InformationDatabase (Royal

Botanic Gardens Kew, 2020) and, for the subset of species for which

it was available, from a local native seed supplier. Where we could

obtain data from both sources—20 of 54 total species—we included

an average. Local and Kew SID database measurements were on aver-

age within 20% of each other. For a small number of species (n= 8) for

which no data were available, we used a genus average seed mass. The

distributions of both species seed mass and maximum height traits for

the top five most abundant genera are included in Appendix S1 (Figure

S1).

2.2 Neighbourhood calculations

We summed the basal areas of the inter- and intra-generic stems sur-

rounding each focal stem at multiple radii (1–5 m) using spatial point

patterns constructed with the ‘spatstat’ R package (Baddeley et al.,

2015, 2020). In the case of individuals with multiple stems, the basal

area was calculated for each stem and then summed. This results in

the same outcome as using the quadratic mean of multi-stemmed indi-

viduals (Curtis & Marshall, 2000) to then calculate area. We use basal

areaas ameasureofneighbourhoodconditions as it integratesboth the

number of neighbouring plants and their size. We hypothesized that

neighbourhood interactions would be the accumulation of stressors

over time; therefore, for survival analysis, neighbourhoods were aver-

aged for each stem over the census period. Where the radius partially

fell outside the plot, we estimated the missing portion of the neigh-

bourhood as the average intra- and inter-generic values for the plot

as a whole and added this proportionally to the unknown portion. We

did not use a measure of distance decay in our calculations, as there is

no generalizable assumption for the rate at which the effects of neigh-

bours ought to decay, particularly across many species.

We chose to sum neighbourhood areas at the genus level to keep

the analysis at a coarse level. That is, we expect that inter-generic dif-

ferences between plants to be stronger than intra-generic (and there-

fore so too the differences in interactions). Further, the dominance of

a few key genera in restoration plantings across Australia (Eucalyptus,

Acacia, Allocasuarina,Melaleuca) means that this increases the capacity

to generalize and broaden our findings across a wider range of ecosys-

tems by considering the planting at this taxonomic level. Nonetheless,

wealso conduct theanalysis at the species level, discuss anydivergence

from the genus-level neighbourhoods in effect and provide these com-

parisons in full in Appendix S3.

We limited the analyses to a 1 to 5 m radius due to the trade-off in

data completeness and sample size. That is, with an increasing neigh-

bourhood radii a larger proportion of the neighbourhood is unknown.

We do not expect neighbourhood interactions to be approaching

the larger ranges found in mature forests, given the restored site is

still in early developmental stages. For instance, the average stem
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diameter in the data set is 6 cm. Beyond a 5-m radius, the total percent-

age of the neighbourhood that would be required to be imputed from

plot averages increases considerably (Appendix S1, Table S2).Wechose

to impute unknown neighbourhood portions rather than prune those

stems from the data set in order to maximize the available sample size

(see Appendix S1, Table S2 for loss in sample size with this approach).

At 5 m, the average imputed portion of the neighbourhood is approxi-

mately 36%. However, we ran all models up to 10 m for comparison of

any variation in the effects of variables but only include 1–5 mmodels

in final model selection process (Appendix S2, Tables S1–S3). We also

checked the sensitivity of our models to our method of neighbourhood

imputation by re-running analysiswith stems removed forwhich>50%

of the neighbourhood was imputed. The results from these mod-

els did not qualitatively differ from our main results (Appendix S4,

Tables S1–S3).

2.2.1 Survival model

Plants were deemed dead if they had no visible living leaves or stems.

We used a binomial mixed-effects model of survival during the period

2011–2018 (‘survival model’). We only included plants established up

until 2011—recruitment after this period was very low (148 recruits

recorded across the 42 plots over 7 years). We accounted for possible

size dependence of mortality by including a term for themaximum size

(basal area) reached by each individual. We chose the maximum basal

area reached as opposed to the average basal area (as for neighbour-

hoodvalues), sincewe included this termtoaccount for size-dependent

mortality, for which we expect the largest size reached by an individual

to bemost important.

2.2.2 Growth models

Due to the large number of live plants that did not record measurable

growth during some census periods, we chose to first model the prob-

ability of a stem growing in a binomial mixed-effects model (‘growth

model’) and then separatelymodelled incremental stemgrowth (‘incre-

ment model’) for stems that did grow, using a linear mixed-effects

model. Growth was recorded from 2011 to 2013, and then annually

until 2018. Growth increments were calculated as basal area incre-

ments (m2 / growing days). Incremental growth was log-transformed

to achieve an approximately normal distribution. As for the survival

model, to allow models to fit random slopes for each species, we

could only model species that recorded some variability in growth or

increment.

2.3 Statistical analyses

We included random effects in all models to account for several forms

of non-independence in our data. We included a term for plot (global

spatial autocorrelation), species (species-specific responses) and genus

(genus-specific responses). For growth models, we also included terms

for stem identity (to account for repeated measurement of the same

stem across multiple census periods) and year (to account for interan-

nual variability in climate). We fitted random slopes in all models for

size, allowing the size dependence of the relevant dependent variable

to differ by species.

To assess potential local (within-plot) spatial autocorrelation, we

tested the relationship between model residuals and x/y coordinates

of individuals within plots in all our models using Moran’s I (Cliff &

Ord, 1973; Cocu et al., 2005; Jumars et al., 1977). We found that three

plots from the survival model (7%), 14 plots from the binomial growth

model (6%) and 26 plots from increment models (10%) exhibited sig-

nificant spatial autocorrelation. To test the sensitivity of our models,

we compared them to the same models but with these plots removed,

and in no cases did this affect our overall results (Appendix S4, Tables

S1–S3). Therefore, the models presented in the main results include

these plots. We also re-ran our analyses with E. occidentalis removed

from the data set to test any potential disproportionate effects this

planted (compared with seeded) species may have on results, which

showed no qualitative effect onmodels (Appendix S4, Tables S1–S3).

Explanatory variables were transformed to improve linearity with

the response variables and to reduce the influence of a small num-

ber of very large values. In all models (survival and growth), stem

diameter (preceding stem size in growth models and maximum size

reached in the survival model), speciesmaximumheight and seedmass

were log-transformed and neighbourhood values were square-root

transformed. Following transformation, all explanatory variables were

scaled by subtracting the global mean and dividing by the standard

deviation.

To choose the presentedneighbourhooddistance,we compared five

separate models using a neighbourhood radius of 1–5 m and assessed

the best performing model using Watanabe–Akaike information crite-

rion (wAIC).

Maximumheight and seedmass are known to be correlated (Wright

et al., 2010), though this is not always a strong relationship (Santini

et al., 2017).We tested this correlation onour data set before including

both variables in the same model and found no significant correlation

(R2 = 0.038, p= 0.084, Appendix S1, Figure S3).

All statistical analyses were conducted using R Version 3.6.3 via

RStudio Version 1.2.5033. All models were fit as Bayesian mixed mod-

els using the R package ‘brms’ (Bürkner et al., 2020). For each model,

we used fourMarkov chainswith 3000 iterations including a 1500 iter-

ation warm-up. We used the Bayes marginal and conditional R2 (Gel-

man et al., 2019) to describe the variance explained by the models.

Equations for all models are included in Appendix S5. All models use

weakly informative prior distributions, meaning they are similar to lin-

ear mixed-effects models.

Bayesian inference does not produce a traditional frequentist p-

value to test significance of model variables (and therefore the abil-

ity to describe results as ‘significant’ or ‘non-significant’). Instead, we

use the ‘probability of direction’ (pd) which is the probability that an

effect operates in a particular direction, which we calculated using the

bayestestR package (Makowski et al., 2019, 2021). The pd can range
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from0.5 to 1,with a pd of>0.975being analogous to a p-value of<0.05

(Makowski et al., 2019).

2.3.1 Survival data set

A total of 1715 individuals were monitored for survival from 2011 to

2018. Of these, 649 plants died in the 7-year sampling period, an over-

all mortality rate of approximately 35% (Table S1). The highest lev-

els of mortality occurred in 2014–2015 with the loss of nearly 200

plants across all plots in each year. Before and after this period, mor-

tality was consistent between 60 and 100 plants per year across all

plots.

The model of survival included 52 species, largely from the families

Fabaceae, Myrtaceae, Casuarinaceae and Proteaceae. Dominant gen-

era included Acacia (26%), Allocasuarina (8%), Calothamnus (11%), Euca-

lyptus (33%) andMelaleuca (17%).

2.3.2 Growth data set

A total of 1866 individualsweremeasured over the study period, yield-

ing 8989 separate increment measurements. Over the 7 years, 5814

were positive growth increments (65%).

Thebinomialmodel of positive growth included54different species,

from the same families included in the survival model. Dominant gen-

era include Acacia (21%), Allocasuarina (7%), Calothamnus (13%), Euca-

lyptus (36%) andMelaleuca (17%).

3 RESULTS

3.1 Probability of survival

The survival model using a 5-m radius ranked higher than all other radii

(1–4 m) when assessed with wAIC (Appendix S1, Table S4). We found

a positive and highly certain relationship between inter-generic neigh-

bourhood basal area and survival (pd=1, Figure 1; see Table 1 for all pd

values for all models). In contrast, the effect of increasing intra-generic

neighbourswasweak and less certain (pd=0.897, Figure 1). Therewas

a strong positive relationship between plant size and survival (pd = 1,

Figure 1).

The interactions between maximum stem size and inter-generic

neighbourhood with stem survival and between stem maximum stem

size and maximum height were highly certain (pd = 0.987, Figures 1

and 2). These interactions indicate that larger plants attained a high

survival probability, regardless of neighbourhood, whereas smaller

plants were nearly twice as likely to survive when in neighbourhoods

with high inter-generic basal area (pd = 0.980, Figure 2b). In con-

trast, an increase in intra-generic neighbours did not modulate size-

dependent survival (pd = 0.505, Figure 2a). Species’ maximum height

interacted with maximum stem size such that taller growing species

attain high rates of survival at relatively small stem sizes, compared to
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Intra−generic neighbours
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F IGURE 1 Odds ratios from the binomial mixedmodel of survival
from 2011 to 2018. Points indicate themedian posterior probability;
the thicker part of the bar is 50% credibility interval and the thinner
portion 95%. Neighbourhoods are the sum of basal areas within a 5-m
radius of each focal stem. All coefficients have been log-transformed,
except for neighbourhood values, which are square root transformed.
Red and blue coefficients correspond to amedian posterior
probability below and above one, respectively. Neighbourhoods are
the sum basal area of inter-generic and intra-generic stemswithin 5m
of each focal stem. The odds ratio is the odds of surviving, with an
increase in each respective variable

TABLE 1 Probability of direction (pd) for eachmodel term in each
model. Values≥ 0.975 are bolded, as these are analogous to a
frequentist p-value of≤ 0.05

Model term Survival

Probability

of growth

Growth

increment

Intrageneric neighboursa 0.897 0.810 0.969

Intergeneric neighboursa 1.000 0.515 0.892

Individual sizeb 1.000 1.000 1.000

Species max. height 0.941 1.000 1.000

Species seedmass 0.813 0.565 0.524

Intrageneric neighboursa ×

individual size

0.505 0.998 1.000

Intergeneric neighboursa ×

individual size

0.980 0.760 0.964

Species max. height× size 0.987 1.000 0.812

aNeighbourhood area refers to the sum basal area of neighbouring plants

within 5 m in survival and growth increment models and 4 m in probability

of growthmodel.
bSize in survivalmodels=maximumsize of the individual; in growthmodels,

it is the preceding stem size.
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F IGURE 2 Interactions from the binomial survival model between
log-transformed plant size (measured as the sum basal area of the
individual) and (a) inter-generic neighbourhood (square root
transformed), (b) intra-generic neighbourhood (square root
transformed) and (c) maximum height (log-transformed). 1= survived
the period 2011–2018. Points are the raw data but are jittered to aid
their visibility. Darker envelopes are 50% credibility intervals and
lighter envelopes are 95%. Neighbourhoods are the sum basal area of
inter-generic and intra-generic stemswithin 5m of each focal stem.
Prefixes ‘high/taller’ and ‘low/shorter’ in colour-coded captions
correspond to+1 (solid line) and –1 (dashed line) standard deviation
from themean of each respectivemoderator variable

smaller growing species which show a linear size–survival relationship

(pd = 0.987, Figure 2c). The marginal R2 (fixed effects only) of the sur-

vival model was 0.26, and the conditional R2 (including random effects)

was 0.69. The variance captured by each random effect is detailed in

Appendix S2 (Table S1).

The direction of the inter-specific neighbourhood effects in the sur-

vival model is the same as in themodels using intra-generic neighbour-

hoods.However, the effect of an increase in neighbouring intra-specific

basal area was negative and highly certain compared to intra-generic

neighbourhoods, which had no effect (Appendix S3, Table S1).

3.2 Probability of positive growth

The binomial growth model using a 4-m radius ranked higher than all

other radii (1–3, 5 m) when assessed with wAIC (Appendix S1). Using

this model, we found that larger plants were less likely to record posi-

tive growth (pd=1, Figure 3). By contrast, speciesmaximumheight had

a positive effect on the odds of growth (pd= 1). The effect of seedmass

on the probability of growthwas weak and uncertain (pd= 0.565).

A highly certain (pd = 0.998) but relatively weak interaction

between plant size and neighbourhood intra-generic basal area indi-

cated that the negative effect of plant size on growth probability was

marginally weaker for large plants in neighbourhoods with a lower

intra-generic basal area (Figure 4a). There was no interactive effect

between the level of inter-generic basal area andplant size (pd=0.760,

Figure 4b). The interaction between plant size and species maximum

height revealed that the negative effect of plant size on growth proba-

bility was stronger for shorter growing species than for taller growing

species (pd= 1, Figure 4c).

Themarginal R2 of the full binomial growthmodel was 0.12, and the

conditional R2 was 0.16. The variance captured by each random effect

is detailed in Appendix S2 (Table S2).

The effect of an increase in intra-specific neighbours on the prob-

ability of growth was positive and more certain compared to intra-

generic neighbours (Appendix S3, Table S2). By contrast, an increase in

inter-specific neighbours had a negative effect on growth (compared

with no effect in inter-generic models).

3.2.1 Growth increments

In the increment model, a 5-m radius outperformed all other radii (1–

4 m) when assessed with wAIC (Appendix S1). Taller growing species

accrued larger increments of growth (pd = 1), as did larger individuals

(pd=1, Figure 3).We found no strong effect of increasing intra-generic

basal areaon incremental growth rate (pd=0.969, Figure3). Seedmass

had no effect on growth rate (pd= 0.524).

The interaction between plant size and intra-generic basal area

showed that growth increments were larger in large plants where

neighbourhoods had a lower intra-generic basal area, though this

effect was very small (pd = 1, Appendix S1, Figure S2). However, the

size–increment relationship was not strongly related to a change in

the neighbouring inter-generic basal area (0.964, Appendix S1, Figure

S2). The interaction between plant size and species maximum height

showed that, compared to shorter growing species, taller growing

species accrue larger growth increments regardless of size, though the

probability of the direction of this effectwas low (pd=0.812, Appendix
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F IGURE 3 Model results showing (a) odds ratios from the binomial model of plants that did or did not recordmeasurable growth, and (b)
regression coefficients from the growth incrementmodel. Points indicate themedian posterior probability; the thicker part of the bar is 50%
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(a) and 5m for (b). All coefficients have been log-transformed, except for neighbourhood values, which are square root transformed. Red and blue
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positive growth, with an increase in each respective variable

S1, Figure S2). The marginal R2 of the increment model was 0.30 and

the conditional R2 was 0.55. The variance captured by each random

effect is detailed in Appendix S2 (Table S3).

The negative direction and certainty of increasing intra-generic

basal area was not present when using intra-specific neighbourhoods

(Appendix S3, Table S3). By contrast, the negative direction and cer-

tainty of inter-specific neighbours was stronger compared to inter-

generic models (Appendix S3, Table S3).

The direction of all effects from all models was consistent at neigh-

bourhoods from 1 to 10 m, though generally confidence of estimates

widened as neighbourhood radius increased (Appendix S2).

4 DISCUSSION

Our results provide evidence consistent with a facilitative relation-

ship of neighbours on survival at the early stages of woody vegetation

restoration after agriculture, and no evidence for competition-driven

mortality (Castro et al., 2002, 2004; Padilla & Pugnaire, 2006). Our

results do not show any negative effects of increasing inter-generic

basal area on survival, and no effect in either direction of increas-

ing intra-generic basal area, contrary to general patterns in the liter-

ature (Comita et al., 2014). Distance- and density-dependent mortal-

ity is generally stronger at wetter sites (Comita et al., 2014), as well as

in regions of higher net primary productivity (LaManna et al., 2017).

Therefore, it might be expected that these positive neighbourhood

effects may dissipate in restoration projects conducted in more pro-

ductive orwetter sites compared to the landscape of the current study.

There was no clear relationship of increasing intra-generic basal

area and odds of growth or incremental growth. While forests with

higher evenness and species richness are generally more productive

than are less diverse forests (Liang et al., 2016; Zhang et al., 2012),

such a relationship was not evident in a meta-analysis of restoration

plantings of forest species on ex-agricultural land in Australia (Staples

et al., 2019). Importantly, we did not find evidence of a trade-off in

growthwhenneighbourswere fromother genera, supporting theadvo-

cacy for continuing to incorporate or even increase genus-level diver-

sity in future restoration projects (Schneemann & McElhinny, 2012;

Standish & Prober, 2020). In addition, we found support for the sur-

vival effects using specific-level neighbourhoods compared to ourmain

genus-level results. The divergence in growth results at this finer taxo-

nomic resolution may be a result of the fact that there are many more

low-scoring intra-specific neighbourhoods compared to intra-generic.

That is, stems were likely to have little or no neighbouring stems of the
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same species, but often had neighbours of the same genus. In these less

common instances of co-occurring with conspecifics, the positive rela-

tionship with growth could be due to microsite conditions highly suit-

able for the species.

There was a positive relationship between species maximum height

and both individual survival and growth, indicating that selecting

diverse mixes of taller growing species could overcome hurdles to

survival and maximize growth. In many woodland communities, this

approach would be at odds with the aim of restoring a reference com-

munity, wheremuch of the diversity occurs in the ground layer (Cramer

et al., 2004;Hobbs&Yates, 2000; Keith, 2006; Kirkpatrick et al., 1995).

Yet, in the most challenging restoration sites where barriers to estab-

lishment and survival are strong, such a strategy may assist in kick-

starting restoration by providing a canopy structure underwhich arriv-

ing species could establish.However, someconsiderationmustbegiven

under such a strategy to avoid creating communities dominatedbyonly

the tallest growing species from a reference community. That is, such

anapproach if taken to theextremecould result in high levels of compe-

tition from the tallest species suppressing the establishment of shorter

growing species.

We found that smaller stems were more likely to grow, yet sur-

vival and growth increments were highest in larger stems. Many of the

dominating Acacia species were likely reaching the end of their natural

lifespan, meaning that only the smaller, younger shrubs were actively

growing by the end of the study period. For example, growth is known

to slow considerably in Acacia pulchella (a shrub) from 5 to 6 years of

age onwards (Monk et al., 1981). The same species was shown in a

restoration following bauxite mining to have reduced growth in dis-

turbed soils with lowermycorrhizal infectivity (Jasper et al., 1989). The

prevalence of this species and other similarly shorter lived and short-

statured species are likely driving the negative relationship between

individual size and growth.

Manyof the taller species in this study are from the genus Eucalyptus

(Appendix S1, Figure S1, Table S1), 95%ofwhich produce underground

lignotubers that can provide greater tolerance of and recovery from

extreme heat and drought (James, 1984; Moore, 2015). Lignotubers

on Eucalyptus cinerea begin formation within 6 months (Graham et al.,

1998). The lignotubermay inpart explain the interactionbetweenmax-

imum height and survival, where once established Eucalyptus seedlings

and trees are less likely to die from drought and heat stress compared

to the other genera in the study. This capacity to recover from adverse

conditions may also explain the interaction between species maximum

height and growth.

We foundnoevidence for a relationshipbetween seedmass and sur-

vival or growth. Seed mass can have lasting effects on seedling estab-

lishment in restoration in the study region, likely due to seed resources

affecting summer drought survival (Hallett et al., 2011). In our case,

however, seed resources were likely exhausted for most species given

many were approximately 3 years old at the beginning of the study

period (Moles & Westoby, 2004). Our results support the notion that

the benefit to establishment afforded to larger seeded species follow-

ing germination does not explain longer term survival or growth in

restoration plantings.
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Our results also indicate that the relevant neighbourhood distance

to consider the effect of diversity on survival and growth is relatively

large (4–5m) in this semi-arid environment. This could be driven by the

fact that a key facilitative mechanism of neighbours in stressful envi-

ronments include physical protection from adverse climatic conditions

such as strong desiccating winds (Stachowicz, 2001). Such interactions

in smaller plants may operate across larger spatial scales compared to

underground interactions. Alternatively, these interactions may scale

relative to the individual size of neighbours.

Future research could extend the range of traits used to explain

plant survival and growth, to increase understanding of the usefulness

of traits to explain demographic changes in these novel environments.

For instance, lowerwooddensitywas related to increasedgrowth rates

in a tropical rainforest restoration (Charles et al., 2018), and meta-

analysis has shown specific leaf area (SLA) to be positively correlated

with early-stage growth (Gibert et al., 2016). This correlation at later

stages of development ismixed, with one recent study encouraging the

use of leaf:wood allometry (specifically the ratio of leaf mass to stem

mass in branches) alongside leaf and wood traits (Gray et al., 2019).

A range of additional under-investigated traits may provide further

insights into variation in ecological restorationoutcomes (Moles, 2018;

Wright et al., 2010). Widening the range of measured traits may also

enable the linking of traits to recruitment to shed light on the low lev-

els of new recruits measured. For example, Dwyer and Mason (2018)

found that recruiting plants following experimental thinning of regen-

erating brigalow (Acacia harpophylla) forests in Queensland, Australia,

were those that are readily bird dispersed. Given that the restoration

of ex-agricultural land through direct seeding is a common restora-

tion method across the world, future investigations into dispersal and

recruitment limitations will be of broad interest to restoration ecolo-

gists and practitioners.

4.1 Implications for future restoration

Previous studies at Peniup have shown that genetically diverse pop-

ulations of some species have been successfully established (Millar,

Anthony, et al., 2019; Millar, Coates, et al., 2019), which is an impor-

tant goal of restoration. However, successful restoration projects are

also characterized by their capacity to persist (Wilsey, 2020).We found

that recruitment was very low, with just 178 recruits recorded in total

across the 7 years and 42 plots. Many species in this restoration may

be reaching the end of their expected lifespan, and as such, mecha-

nisms to promote recruitment will be vital in replacing the diversity as

plants continue to die.While difficult logistically to enact at scale (Mur-

cia et al., 2016), burning and thinning are known to promote recruit-

ment and growth in restoration projects elsewhere (Dodson & Peter-

son, 2010; Dwyer & Mason, 2018; Gonsalves et al., 2018; Towers &

Dwyer, 2021; Young et al., 2015).

Our results show that higher levels of inter-generic neighbours in

direct-seeded vegetation may improve survival, particularly in smaller

stems. Taller statured plantsweremore likely to survive and grow com-

pared with shorter growing plants, and growth increments were neg-

atively related to an increase in intra-generic neighbour density. Our

results support restoration efforts in similar landscapes that tend to

focus on planting key canopy and sub-canopy species. Unfortunately,

however, ourdata set shows little evidenceof recruitment in theunder-

storey, despite large rates ofmortality inmany species.Our results sug-

gest that direct seeding of seed mixes of tall and small plant species

froma rangeof genera at a fine scale is likely tobeakeypracticalmanip-

ulation that practitioners can apply to maximize survival and improve

future restoration outcomes.
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