757 research outputs found
Silicon-organic hybrid electro-optical devices
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices
40 Gbit/s silicon-organic hybrid (SOH) phase modulator
A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology
Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials
High-speed silicon-organic hybrid (SOH) modulator with 1,6 fJ/bit and 180 pm/V in-device nonlinearity
Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration
Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM
100 Gbit/s electro-optic modulator and 56 Gbits/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology
CMOS-compatible silicon photonics combined with covers of chi (2) or chi (3)-nonlinear organic material allows electro-optic modulators and all-optical wavelength converters for data rates of 100 Gbit/s and beyond. The devices are not impaired by free carriers
- …
