1,791 research outputs found
Probing the helium-graphite interaction
Two separate lines of investigation have recently converged to produce a highly detailed picture of the
behavior of helium atoms physisorbed on graphite basal plane surfaces. Atomic beam scattering experiments
on single crystals have yielded accurate values for the binding energies of several· states for both (^4)He and (^3)He, as well as matrix elements of the largest Fourier component of the periodic part of the interaction potential.
From these data, a complete three-dimensional description of the potential has been constructed, and the
energy band structure of a helium atom moving in this potential calculated. At the same time, accurate
thermodynamic measurements were made on submonolayer helium films adsorbed on Grafoil. The binding
energy and low-coverage specific heat deduced from these measurements are in excellent agreement with
those calculated from the band structures
A Characterization of Mixed Unit Interval Graphs
We give a complete characterization of mixed unit interval graphs, the
intersection graphs of closed, open, and half-open unit intervals of the real
line. This is a proper superclass of the well known unit interval graphs. Our
result solves a problem posed by Dourado, Le, Protti, Rautenbach and
Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde
Quantum Weakly Nondeterministic Communication Complexity
We study the weakest model of quantum nondeterminism in which a classical
proof has to be checked with probability one by a quantum protocol. We show the
first separation between classical nondeterministic communication complexity
and this model of quantum nondeterministic communication complexity for a total
function. This separation is quadratic.Comment: 12 pages. v3: minor correction
Non locality, closing the detection loophole and communication complexity
It is shown that the detection loophole which arises when trying to rule out
local realistic theories as alternatives for quantum mechanics can be closed if
the detection efficiency is larger than
where is the dimension of the entangled system. Furthermore it is argued
that this exponential decrease of the detector efficiency required to close the
detection loophole is almost optimal. This argument is based on a close
connection that exists between closing the detection loophole and the amount of
classical communication required to simulate quantum correlation when the
detectors are perfect.Comment: 4 pages Latex, minor typos correcte
Synchronizing Automata on Quasi Eulerian Digraph
In 1964 \v{C}ern\'{y} conjectured that each -state synchronizing automaton
posesses a reset word of length at most . From the other side the best
known upper bound on the reset length (minimum length of reset words) is cubic
in . Thus the main problem here is to prove quadratic (in ) upper bounds.
Since 1964, this problem has been solved for few special classes of \sa. One of
this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In
this paper we introduce a new approach to prove quadratic upper bounds and
explain it in terms of Markov chains and Perron-Frobenius theories. Using this
approach we obtain a quadratic upper bound for a generalization of Eulerian
automata.Comment: 8 pages, 1 figur
Diagonally Neighbour Transitive Codes and Frequency Permutation Arrays
Constant composition codes have been proposed as suitable coding schemes to
solve the narrow band and impulse noise problems associated with powerline
communication. In particular, a certain class of constant composition codes
called frequency permutation arrays have been suggested as ideal, in some
sense, for these purposes. In this paper we characterise a family of neighbour
transitive codes in Hamming graphs in which frequency permutation arrays play a
central rode. We also classify all the permutation codes generated by groups in
this family
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
Chromatic number, clique subdivisions, and the conjectures of Haj\'os and Erd\H{o}s-Fajtlowicz
For a graph , let denote its chromatic number and
denote the order of the largest clique subdivision in . Let H(n) be the
maximum of over all -vertex graphs . A famous
conjecture of Haj\'os from 1961 states that for every
graph . That is, for all positive integers . This
conjecture was disproved by Catlin in 1979. Erd\H{o}s and Fajtlowicz further
showed by considering a random graph that for some
absolute constant . In 1981 they conjectured that this bound is tight up
to a constant factor in that there is some absolute constant such that
for all -vertex graphs . In this
paper we prove the Erd\H{o}s-Fajtlowicz conjecture. The main ingredient in our
proof, which might be of independent interest, is an estimate on the order of
the largest clique subdivision which one can find in every graph on
vertices with independence number .Comment: 14 page
Refugees, trauma and adversity-activated development
The nature of the refugee phenomenon is examined and the position of mental health professionals is located in relation to it. The various uses of the word 'trauma' are explored and its application to the refugee context is examined. It is proposed that refugees' response to adversity is not limited to being traumatized but includes resilience and Adversity-Activated Development (AAD). Particular emphasis is given to the distinction between resilience and AAD. The usefulness of the 'Trauma Grid' in the therapeutic process with refugees is also discussed. The Trauma Grid avoids global impressions and enables a more comprehensive and systematic way of identifying the individual refugee's functioning in the context of different levels, i.e. individual, family, community and society/culture. Finally, I discuss implications for therapeutic work with refugees
- …
