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DIAGONALLY NEIGHBOUR TRANSITIVE CODES

AND FREQUENCY PERMUTATION ARRAYS

NEIL I. GILLESPIE AND CHERYL E. PRAEGER

Abstract. Constant composition codes have been proposed as suitable coding schemes to solve the

narrow band and impulse noise problems associated with powerline communication. In particular, a

certain class of constant composition codes called frequency permutation arrays have been suggested as

ideal, in some sense, for these purposes. In this paper we characterise a family of neighbour transitive

codes in Hamming graphs in which frequency permutation arrays play a central rode. We also classify

all the permutation codes generated by groups in this family.

1. Introduction

Powerline communication has been proposed as a solution to the “last mile problem” in the delivery

of fast and reliable telecommunications at the lowest cost [13, 17]. Any coding scheme designed for

powerline communication must maintain a constant power output, while at the same time combat both

permanent narrow band noise and impulse noise, as well as the usual white Gaussian/background noise

[5, 13, 17]. Addressing the last of these, the authors introduced neighbour transitive codes (see below)

as a group theoretic analogue to the assumption that white Gaussian noise affects symbols in codewords

independently at random [9] - an assumption often made in the theory of error-correcting codes [18,

p.5]. To deal with the other noise considerations in powerline communication, constant composition

codes (CCC) have been proposed as suitable coding schemes [5, 6] - these codes are of length m over

an alphabet of size q and have the property that each codeword has pi occurrences of the ith letter of

the alphabet, where the pi are positive integers such that
∑

pi = m . It is also suggested in [5] that

constant composition codes where the pi are all roughly m/q are particularly well suited for powerline

communication. Constant composition codes where each letter occurs m/q times in each codeword are

called frequency permutation arrays, and were introduced in [14]. In this paper we characterise a family

of neighbour transitive codes in which frequency permutation arrays play a central role, and we classify

the subfamily consisting of permutation codes generated by groups (each of which is associated with a

2-transitive permutation group).

We consider a code of length m over an alphabet Q of size q to be a subset of the vertex set of

the Hamming graph Γ = H(m, q), which has automorphism group Aut(Γ) ∼= Sm
q ⋊ Sm . We define the
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automorphism group of a code C to be the setwise stabiliser of C in Aut(Γ), and we denote it by Aut(C)

(and note that this is a more general notion than is sometimes used in the literature). We define the the

set of neighbours of C to be the set C1 of vertices in Γ that are not codewords, but are adjacent to at

least one codeword in C . We say C is X -neighbour transitive, or simply neighbour transitive, if there

exists a group X of automorphisms such that both C and C1 are X -orbits.

Let α be a vertex in H(m, q), and suppose {a1, . . . , ak} is the set of letters that occur in α . The

composition of α is the set

(1.1) Q(α) = {(a1, p1), . . . , (ak, pk)},

where the pi are positive integers and there are exactly pi occurrences of the letter ai in the codeword

α . Also let I(α) = {p1, . . . , pk} , which can be a multi-set. It follows from the definition that, for a

constant composition code, k = q and Q(α) = Q(β) for all codewords α, β . As such, we can talk of the

composition of a constant composition code, which is equal to Q(α) for each codeword α . Now, for a set

I of k positive integers that sum to m , with k 6 q , let Π(I) be the set of vertices α in H(m, q) with

I(α) = I . Then, for any constant composition code C , there exists a set I of q positive integers such

that C ⊆ Π(I).

As automorphisms of a CCC must leave its composition invariant, it is natural to ask what types of

automorphisms might do this, particularly as we are interested in neighbour transitive CCC’s. The group

Sq (which we identify with the Symmetric group of Q) induces a faithful action on the vertices of Γ in

which elements of Sq act naturally on each of the m entries of a vertex. We denote the image of Sq under

this action by Diagm(Sq) (since it is a diagonal subgroup of the base group Sm
q of Aut(Γ), see (2.1)).

It follows (from Lemma 2.6) that Π(I) is left invariant under Diagm(Sq). Similarly, the group L of all

permutations of entries fixes Π(I) setwise. (This holds because any permutation of the entries of a vertex

α is a rearrangement of the letters occurring in α , leaving the composition Q(α) unchanged.) Moreover,

the group 〈Diagm(Sq), L〉 = Diagm(Sq)⋊L is the largest subgroup of Aut(Γ) that leaves invariant Π(I)

for all I (for example no other element of Aut(Γ) fixes Π({m})). Hence it is natural to ask which CCC’s

are fixed setwise by the group Diagm(Sq) ⋊ L , or more specifically, which are X -neighbour transitive

with X 6 Diagm(Sq)⋊ L . This leads to the following definition.

Definition 1.1. A code C in H(m, q) is diagonally X -neighbour transitive, or simply diagonally neigh-

bour transitive, if it is X -neighbour transitive for some X 6 Diagm(Sq)⋊ L .

Our first major result characterises diagonally neighbour transitive codes, and shows that diagonally

neighbour transitive CCC’s are necessarily frequency permutation arrays.

Theorem 1.2. Let C be a diagonally neighbour transitive code in H(m, q) . Then either C is a frequency

permutation array; C = {(a, . . . , a)} for some letter a ; or C is one of the codes described in Definition

3.1 (i), (ii) or (iii), none of which is a constant composition code.

Theorem 1.2 gives us a nice characterisation of diagonally neighbour transitive codes, but it does

not provide us with any examples of neighbour transitive frequency permutation arrays. We consider

permutation codes to find examples of such codes. By identifying the alphabet Q with the set {1, . . . , q} ,
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any permutation t ∈ Sq can be associated with the q -tuple α(t) in H(q, q), which has ith entry equal

to the image of i under t . For example, if q = 3 and t = (1, 2, 3), then α(t) = (2, 3, 1). For a

subset T of Sq , we define C(T ) = {α(t) : t ∈ T } , called the permutation code generated by T , and

NSq
(T ) = {x ∈ Sq : T x = T } .

Theorem 1.3. Let T be a subgroup of Sq . Then the permutation code C(T ) is diagonally neighbour

transitive in H(q, q) if and only if NSq
(T ) is 2-transitive. Moreover, for any positive integer p and

diagonally neighbour transitive code C(T ) , the code Repp(C(T )) , given in (2.2), is a diagonally neighbour

transitive frequency permutation array in H(pq, q) .

In Section 2 we introduce the required definitions and some preliminary results. Then, in Section 3,

we give some examples of diagonally neighbour transitive codes in H(m, q). Finally, we prove Theorems

1.2 and 1.3 in Sections 4 and 5 respectively.

2. Definitions and Preliminaries

Any code of length m over an alphabet Q of size q can be embedded in the vertex set of the Hamming

graph. The Hamming graph Γ = H(m, q) has vertex set V (Γ), the set of m-tuples with entries from Q ,

and an edge exists between two vertices if and only if they differ in precisely one entry. Throughout we

assume that m, q > 2. The automorphism group of Γ, which we denote by Aut(Γ), is the semi-direct

product B ⋊ L where B ∼= Sm
q and L ∼= Sm , see [4, Theorem 9.2.1]. Let g = (g1, . . . , gm) ∈ B , σ ∈ L

and α = (α1, . . . , αm) ∈ V (Γ). Then g and σ act on α in the following way:

αg = (αg1
1 , . . . , αgm

m ), ασ = (α1σ−1 , . . . , αmσ−1).

For any subgroup T of Sq , we define the following subgroup of B :

(2.1) Diagm(T ) = {(h, . . . , h) ∈ B : h ∈ T }.

Let M = {1, . . . ,m} , and view M as the set of vertex entries of H(m, q). Let 0 denote a distinguished

element of the alphabet Q . For α ∈ V (Γ), the support of α is the set supp(α) = {i ∈ M : αi 6= 0} .

The weight of α is defined as wt(α) = | supp(α)| . For all pairs of vertices α, β ∈ V (Γ), the Hamming

distance between α and β , denoted by d(α, β), is defined to be the number of entries in which the two

vertices differ. We let Γk(α) denote the set of vertices in H(m, q) that are at distance k from α . For

a1, . . . , ak ∈ Q and positive integers p1, . . . , pk such that
∑

pi = m , we let (ap1

1 , ap2

2 , . . . , apk

k ) denote the

vertex

(a1, . . . , a1
︸ ︷︷ ︸

p1

, a2, . . . , a2
︸ ︷︷ ︸

p2

, . . . , ak, . . . , ak
︸ ︷︷ ︸

pk

) ∈ V (Γ)

Let α = (α1, . . . , αm) ∈ V (Γ). For a ∈ Q we let ν(α, i, a) ∈ V (Γ) denote the vertex with j th entry

ν(α, i, a)|j =

{

αj if j 6= i

a if j = i.

We note that if αi = a then ν(α, i, a) = α , otherwise ν(α, i, a) ∈ Γ1(α). Throughout this paper

whenever we refer to ν(α, i, a) as a neighbour of α , or being adjacent to α , we mean that a ∈ Q\{αi} .

The following straight forward result describes the action of automorphisms of Γ on vertices of this form.
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Lemma 2.1. Let α = (α1, . . . , αm) ∈ V (Γ) , a ∈ Q , and x = (h1, . . . , hm)σ ∈ Aut(Γ) . Then

ν(α, i, a)x = ν(αx, iσ, ahi) , and is adjacent to αx if and only if ν(α, i, a) is adjacent to α .

For a code C in H(m, q), the minimum distance, δ , of C is the smallest distance between distinct

codewords of C . For any γ ∈ V (Γ), we define

d(γ, C) = min{d(γ, β) : β ∈ C}.

to be the distance of γ from C . The covering radius of C , which we denote by ρ , is the maximum

distance that any vertex in H(m, q) is from C . We let Ci denote the set of vertices that are distance

i from C , and deduce, for i 6 ⌊(δ − 1)/2⌋ , that Ci is the disjoint union of Γi(α) as α varies over C .

Furthermore, C0 = C and {C,C1, . . . , Cρ} forms a partition of V (Γ) called the distance partition of C .

In particular, the complete code C = V (Γ) has covering radius 0 and trivial distance partition {C} ; and

if C is not the complete code, we call the non-empty subset C1 the set of neighbours of C . Let C and

C′ be codes in H(m, q). We say C and C′ are equivalent if there exists x ∈ Aut(Γ) such that Cx = C′ ,

and if C′ = C we call x an automorphism of C . Recall, the automorphism group of C , denoted by

Aut(C), is the setwise stabiliser of C in Aut(Γ).

Let C be a code in H(m, q) with distance partition {C,C1, . . . , Cρ} . As we defined in the introduction,

we say C is X -neighbour transitive if there exists X 6 Aut(Γ) such that Ci is an X -orbit for i = 0, 1.

If there exists X 6 Aut(Γ) such that Ci is an X -orbit for i = 0, . . . , ρ , we say C is X -completely

transitive, or simply completely transitive.

Remark 2.2. The reader should note that the definition of neighbour transitivity given in [9] is more

general than the one given here in that it only requires C1 to be an X -orbit. However, it is not

unreasonable to use the definition given here because if δ > 3 and C1 is an X -orbit with X 6 Aut(C),

then X necessarily acts transitively on C , and furthermore, it is shown in [9] that an automorphism

group that fixes C1 setwise often has to also fix C setwise. Note also that completely transitive codes

are necessarily neighbour transitive.

Lemma 2.3. Let C be a code with distance partition C = {C,C1, . . . , Cρ} and y ∈ Aut(Γ) . Then

Cy
i := (Ci)

y = (Cy)i for each i . In particular, the code Cy has distance partition {Cy, Cy
1 , . . . , C

y
ρ} ,

and C is Aut(C)-invariant. Moreover, C is X -neighbour (completely) transitive if and only if Cy is

Xy -neighbour (completely) transitive.

Proof. Let β ∈ Ci . Then there exists α ∈ C such that d(β, α) = i . Since automorphisms preserve adja-

cency it follows that d(βy , αy) = i . Thus d(βy , Cy) 6 i . The same argument shows that if j = d(βy , Cy)

then i = d(β,C) = d((βy)y
−1

, (Cy)y
−1

) 6 j , and hence d(βy, Cy) = i . Thus (Ci)
y ⊆ (Cy)i . A similar

argument shows that (Cy)i ⊆ (Ci)
y . Hence (Ci)

y = (Cy)i . Therefore, without ambiguity, we can denote

this set by Cy
i . Thus the distance partition of Cy is {Cy, Cy

1 . . . , Cy
ρ} . In particular, if y ∈ Aut(C), it

follows that (Ci)
y = (Cy)i = Ci for each i . That is C is Aut(C)-invariant. Finally, C is X -neighbour

(completely) transitive if and only if Ci is an X -orbit for i = 0, 1 (i = 0, . . . , ρ), which holds if and only

if Cy
i is an Xy -orbit for i = 0, 1 (i = 0, . . . , ρ). �
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Let C be a code with covering radius ρ and let s ∈ {0, . . . , ρ} . As in [4, p. 346], we say C is s-regular

if for each vertex γ ∈ Ci , with i = 0, . . . , s , and integer k = 0, . . . ,m , the number of codewords at

distance k from γ depends only on i and k , and is independent of the choice of γ ∈ Ci . If s = ρ we

say C is completely regular.

Remark 2.4. It is known that completely transitive codes are necessarily completely regular [11, Lemma

2.1]. Similarly, because automorphisms preserve adjacency, it is straight forward to show that any

neighbour transitive code is necessarily 1-regular.

Lemma 2.5. Let C be a completely regular code in H(m, q) with distance partition {C,C1, . . . , Cρ} .

Then Cρ is completely regular with distance partition {Cρ, Cρ−1, . . . , C1, C} ; and Aut(C) = Aut(Cρ) .

Furthermore, C is X -completely transitive if and only if Cρ is X -completely transitive.

Proof. The fact that Cρ is completely regular with distance partition {Cρ, Cρ−1, . . . , C} is given in [16].

It then follows from Lemma 2.3 that Aut(C) = Aut(Cρ). By definition, C is X -completely transitive if

and only if each Ci is an X -orbit, which therefore holds if and only if Cρ is X -completely transitive. �

For α ∈ V (Γ), recall Q(α), the composition of α defined in (1.1). For each distinct pi that appears

in Q(α) we want to register the number of distinct letters that appear pi times. We let

Num(α) = {(p1, s1), . . . , (pj , sj)}

where (pi, si) means that si distinct letters appear pi times in α . We note that
∑

si = k , the number

of distinct letters that occur in α .

Lemma 2.6. Let α ∈ V (Γ) with Q(α) = {(a1, p1), . . . , (ak, pk)} and x = (h, . . . , h)σ ∈ Diagm(Sq)⋊ L .

Then Q(αx) = {(ah1 , p1), . . . , (a
h
k , pk)} and Num(αx) = Num(α) .

Proof. Let α = (α1, . . . , αm) and a ∈ Q . Note that αi = a if and only if αh
i = ah , and that

αh
i = αx|iσ . Therefore for every occurrence of a in α there is a corresponding occurrence of ah in

αx . Thus Q(αx) = {(ah1 , p1), . . . , (a
h
k , pk)} . We note that {p1, . . . , pk} is left invariant by the action of x

on α . Therefore Num(α) = Num(αx). �

Corollary 2.7. Let C be a diagonally X -neighbour transitive code, and let ν ∈ Ci for i = 0, 1 . Then

Num(ν′) = Num(ν) for all ν′ ∈ Ci . If in addition X 6 L , then Q(ν′) = Q(ν) for all ν′ ∈ Ci .

For a positive integer p , we can identify the vertex set of the Hamming graph Γ(p) = H(mp, q) with the

set of arbitrary p-tuples of vertices from Γ = H(m, q). For a group X 6 Aut(Γ), we let (x, σ) ∈ X × Sp

act on the vertices of Γ(p) in the following way:

(α1, . . . , αp)
(x,σ) = (αx

1σ−1 , . . . , αx
pσ−1),

where α1, . . . , αp ∈ V (Γ). For α ∈ V (Γ), we let repp(α) = (α, . . . , α) ∈ V (Γ(p)), and for a code C in Γ

with minimum distance δ we let

(2.2) Repp(C) = {repp(α) : α ∈ C},
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which is a code in Γ(p) with minimum distance pδ . It follows that repp(α)
(x,σ) = repp(α

x), and so C is

an X -orbit if and only if Repp(C) is an (X × Sp)-orbit. For α, ν ∈ V (Γ) we let µ(repp(α), i, ν) denote

the vertex constructed by changing the ith vertex entry of repp(α) from α to ν . It follows that ν ∈ Γ1(α)

if and only if µ(repp(α), i, ν) ∈ Γ1(repp(α)), and that µ(repp(α), i, ν)
(x,σ) = µ(repp(α

x), iσ, νx).

Lemma 2.8. Let C be an X -neighbour transitive code in Γ = H(m, q) with δ > 2 such that a stabiliser

Xα acts transitively on Γ1(α) for some α ∈ C . Then Repp(C) is (X × Sp)-neighbour transitive in

H(mp, q) .

Proof. It follows from the comments above and Lemma 2.3 that we only need to prove the transitivity

on the neighbours of Repp(C). Let ν1, ν2 ∈ Repp(C)1 . Then there exist i, j and β, γ ∈ C such

that ν1 = µ(repp(β), i, νβ) and ν2 = µ(repp(γ), j, νγ) for some adjacent vertices νβ , νγ of β, γ in Γ

respectively. There exists x ∈ X such that βx = γ , so ν
(x,1)
1 = µ(repp(γ), i, ν

x
β), and νxβ ∈ Γ1(γ) since

adjacency is preserved by x in Γ. As X acts transitively on C , and because Xα acts transitively on

Γ1(α), there exists y ∈ Xγ such that νxyβ = νγ . By choosing σ ∈ Sp such that iσ = j , we deduce that

ν
(xy,σ)
1 = ν2 . �

Let C be a neighbour transitive code in H(m, q) with δ = 1. Let α, β ∈ C such that d(α, β) = 1,

and ν ∈ Γ1(α)∩C1 (such a vertex exists by the transitivity on C ). It follows that ν1 = µ(repp(α), 1, ν),

ν2 = µ(repp(α), 1, β) ∈ Repp(C)1 in H(pq, q). However, there does not exist x ∈ Aut(C) such that

βx = ν because Aut(C) fixes C setwise, and so ν1 and ν2 are not contained in the same (Aut(C)×Sp)-

orbit. Thus the condition that δ > 2 in Lemma 2.8 is essential.

3. Examples of Neighbour Transitive Codes

In this section we define four infinite families of codes and prove that all codes in these families are

neighbour transitive. In Section 4, we use these codes to classify diagonally neighbour transitive codes in

Γ = H(m, q). In all cases m > 1.

Definition 3.1. (i) The repetition code in H(m, q) is

Rep(m, q) = {(am) : a ∈ Q} = {α ∈ V (Γ) : Num(α) = {(m, 1)}}.

(ii) Let m < q , and define

Inj(m, q) = {(α1, . . . , αm) ∈ V (Γ) : αi 6= αj for i 6= j}

= {α ∈ V (Γ) : Num(α) = {(1,m)} }.

(iii) Let m be odd with m > 3 and q = 2, and define, in Γ = H(m, 2),

W ([m/2], 2) = {α ∈ V (Γ) : wt(α) = (m± 1)/2 }

= {α ∈ V (Γ) : Num(α) = {((m+ 1)/2, 1), ((m− 1)/2, 1)} }.

(iv) Let p be any positive integer, and let m = pq , and define

All(pq, q) = {α ∈ V (Γ) : Num(α) = {(p, q)} }
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Remark 3.2. The codes Inj(m, q) are examples of injection codes, which were recently introduced by

Dukes [7]. Note also that All(pq, q) is the largest possible frequency permutation array of length pq over

an alphabet of size q .

Theorem 3.3. Let C be one of the codes in Definition 3.1. Then C is neighbour transitive with

Aut(C) = Diagm(Sq) ⋊ L . Moreover, C has minimum distance δ = m , 1 , 1 and 2 respectively in

(i), (ii), (iii), (iv) of Definition 3.1.

Proof. It follows from Lemma 2.6 that, in all cases, Aut(C) contains H = Diagm(Sq) ⋊ L , and it is

clear that the minimum distance of C is as stated. Moreover, it is easy to check that the group H acts

transitively on C (again in all four cases). Now, the set C1 of neighbours is

C1 =







{ν ∈ V (Γ) : Num(ν) = {(m− 1, 1), (1, 1)} } in case (i)

{ν ∈ V (Γ) : Num(ν) = {(2, 1), (1,m− 2)} } in case (ii)

{ν ∈ V (Γ) : Num(ν) = {((m+ 3)/2, 1), ((m− 3)/2, 1)} } in case (iii)

{α ∈ V (Γ) : Num(α) = {(p+ 1, 1), (p, q − 2), (p− 1, 1)} } in case (iv)

(noting that in case (iv) we may have q = 2), and again in all cases it is straight forward to check that H

is transitive on C1 . Thus C is H -neighbour transitive. It remains to prove that Aut(C) = H . Suppose

to the contrary that Aut(C) contains y = (h1, . . . , hm)σ such that hi 6= hj for some i 6= j . Since

L 6 H 6 Aut(C), we may assume that σ = 1 and that h1 6= h2 . Moreover, since Diagm(Sq) 6 Aut(C),

we may further assume that h2 = 1, so h1 6= 1. Let a, b ∈ Q such that ah1 = b 6= a . We consider

the cases above separately, and in the first two cases arrive at a contradiction by exhibiting a codeword

α ∈ C such that αy /∈ C .

(i) If C = Rep(m, q) then (am)y |1 = b and (am)y|2 = a , so (am)y /∈ C .

(ii) If C = Inj(m, q), then C contains a codeword α with α1 = a and α2 = b . However, αy has

αy|1 = αy |2 = b , so αy /∈ C .

(iii) Let q = 2, C = W ([m/2], 2) with m > 3 and m odd, and consider

C′ = Rep(m, 2) = {0 = (0, . . . , 0),1 = (1, . . . , 1)}.

Let α ∈ V (Γ) such that wt(α) = k for 1 6 k 6 m − 1. Then d(α,0) = k and d(α,1) = m − k .

If k 6 (m − 1)/2, then k 6 m − 1 − k < m − k , and so d(α,C′) = k . If k > (m + 1)/2, then

k > m + 1 − k > m − k , and so d(α,C′) = m − k . It follows that d(α,C′) is maximised when

k = (m− 1)/2 or k = (m+ 1)/2, and in both cases d(α,C′) = (m− 1)/2. Thus C′ has covering radius

ρ = (m− 1)/2. It also follows that

C′
ρ = W ([m/2], 2) = C.

It is known that C′ is completely transitive and hence completely regular [10, Sec. 2]. Moreover, we

have just proved that Aut(C′) = H . Therefore, by Lemma 2.5, Aut(C) = Aut(C′) = H .

(iv) Let ν ∈ V (Γ) and suppose Q(ν) = {(a1, p1), . . . , (ak, pk)} with p1 > p2 > . . . > pk . Then

k 6 q and p1 + . . . + pk = m = pq , and in particular p1 > p . There exists σ ∈ L 6 Aut(C) such

that νσ = (ap1

1 , ap2

2 , . . . , apk

k ). Consider the codeword α = (ap1, a
p
2, . . . , a

p
q) ∈ C . Then νσ and α agree
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in at least the first p entries. Therefore d(νσ, α) 6 p(q − 1) and so d(ν, C) = d(νσ, C) 6 p(q − 1).

Therefore ρ 6 p(q − 1). Now consider ν = (a, . . . , a) for some a ∈ Q . It follows from the definition of

C that d(ν, α) = p(q − 1) for all α ∈ C . Therefore d(ν, C) = p(q − 1) and so ρ = p(q − 1). Moreover,

Rep(m, q) ⊆ Cρ . Now suppose ν ∈ Cρ and Q(ν) = {(a1, p1), . . . , (ak, pk)} with k > 2 and p1 > p .

There exists σ ∈ L 6 Aut(C) such that νσ = (ap1, a
p2

2 , ap1−p
1 , ap3

3 , . . . , apk

k ). Since σ ∈ Aut(C), Lemma

2.3 implies that νσ ∈ Cρ also. Consider the codeword α = (ap1, a
p
2, . . . , a

p
q). Then νσ and α agree in the

first p + p2 > p , therefore d(νσ, α) 6 pq − (p + 1) < p(q − 1), which is a contradiction as νσ ∈ Cρ . It

follows that Cρ = Rep(m, q). In particular, by Lemma 2.3, Aut(C) leaves Rep(m, q) invariant and so

Aut(C) is contained in Aut(Rep(m, q)), which we have just proved is equal to H . �

The proof of Theorem 3.3 yields the following immediate corollary.

Corollary 3.4. (i) If q = 2 and m > 3 is odd, then C = W ([m/2], 2) has covering radius ρ = (m−1)/2

and Cρ = Rep(m, 2) . Furthermore, C and Cρ are completely transitive.

(ii) If m = pq for some p , then C = All(pq, q) has covering radius ρ = p(q− 1) and Cρ = Rep(m, q) .

4. Characterising Diagonally Neighbour Transitive Codes.

In this section we characterise diagonally neighbour transitive codes in Γ = H(m, q). However, before

we consider such codes, we first prove some interesting results about connected subsets ∆ of V (Γ) (that

is to say, the subgraph of Γ induced on ∆ is connected).

Lemma 4.1. Let ∆ be a connected subset of V (Γ) . Let C be a code that is a proper subset of ∆ . Then

C1 ∩∆ 6= ∅ .

Proof. Let α ∈ C and β ∈ ∆\C . Since ∆ is a connected subset, there exists a path

α = α0, α1, . . . , αℓ = β

such that each αi ∈ ∆. Because α ∈ C and β /∈ C , there is a least i < ℓ such that αi ∈ C and

αi+1 /∈ C . Since d(αi, αi+1) = 1, it follows that αi+1 ∈ C1 . �

Lemma 4.2. The codes Inj(m, q) (with 1 < m < q ) and W ([m/2], 2) (with m odd and m > 3) are

connected subsets of V (Γ) .

Proof. Firstly we consider ∆1 = Inj(m, q). Let α, β ∈ ∆1 . We shall prove that α, β are connected

by a path in ∆1 using induction on the distance d(α, β) in Γ. This is true if d(α, β) = 1, so assume

that d(α, β) = w > 1, and the property holds for distances less than w . Let S = {k : αk = βk} ,

i ∈ M\S and α∗ = ν(α, i, βi). Then α∗ is adjacent to α in Γ. If βi 6= αk for all k ∈ M\(S ∪ {i}), then

α∗ ∈ ∆1 and d(α∗, β) = w − 1. Therefore, by the inductive hypothesis, α∗ and β are connected by a

path in ∆1 and hence so are α and β . Thus we may assume that βi = αj for some j ∈ M\(S ∪ {i}).

We note that j is unique since α ∈ ∆1 . Also α∗
j = α∗

i and so α∗ /∈ ∆1 . Since m < q , there exists

a ∈ Q\{α1, . . . , αm} . Let α♦ = ν(α, j, a). Then α♦ ∈ ∆1 ∩ Γ1(α). If a = βj then d(α♦, β) = w − 1.

Therefore, by the inductive hypothesis, α♦ and β are connected by a path in ∆1 and hence so are α and
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β . If a 6= βj then d(α♦, β) = w . In this case let α♥ = ν(α♦, i, βi). It follows that α♥ ∈ ∆1 ∩ Γ1(α
♦)

and d(α♥, β) = w− 1. Therefore by the inductive hypothesis, α♥ and β are connected by a path in ∆1

and hence so are α and β . Thus ∆1 is connected by induction.

We now consider the set ∆2 = W ([m/2], 2). Let α, β ∈ ∆2 such that wt(α) = wt(β) = (m+1)/2. Fur-

thermore let S = supp(α)∩ supp(β), J = supp(α)\S = {j1, . . . , jℓ} and K = supp(β)\S = {k1, . . . , kℓ} .

Let α0 = α and for i = 1, . . . , 2ℓ let αi be the vertex in V (Γ) with

supp(αi) =

{

supp(αi−1)\{j(i+1)/2} if i is odd

supp(αi−1) ∪ {ki/2} if i is even.

It follows that wt(αi) = (m−1)/2 or (m+1)/2 if i is odd or even respectively. Moreover, d(αi, αi−1) = 1

for i = 1, . . . , 2ℓ . Thus

α = α0, α1, . . . , α2ℓ = β

is a path in ∆2 from α to β . A similar argument shows that there exists a path in ∆2 between two

vertices of weight (m−1)/2. Now suppose α, β ∈ ∆2 are such that they have different weights with, say,

α having weight (m− 1)/2. Let k ∈ supp(β)\ supp(α) and α1 be such that supp(α1) = supp(α) ∪ {k} .

Then α1 is adjacent to α and has weight (m+ 1)/2, and as we have just shown, there exists a path in

∆2 from α1 to β . �

Theorem 4.3. Let C be a diagonally X -neighbour transitive code in Γ = H(m, q) . Then one of the

following holds:

(i) C = {(a, . . . , a)} for some a ∈ Q ;

(ii) C = Rep(m, q) ;

(iii) C = Inj(m, q) where m < q ;

(iv) C = W ([m/2], 2) where m > 3 and odd;

(v) there exists a positive integer p such that m = pq and C is contained in All(pq, q) .

Proof. Let α ∈ C and suppose that α has composition

Q(α) = {(a1, p1), . . . , (ak, pk)}

with p1 > p2 > . . . > pk and k 6 q . Let H = Diagm(Sq)⋊ L . We break our analysis up into the cases

k = 1 and k > 2.

Case k = 1 : In this case α = (a1, . . . , a1) and

C = αX ⊆ αH = Rep(m, q).

If |C| = 1, then X 6 Hα = Diagm(Sq−1) ⋊ L and C1 = {ν(α, i, b) : 1 6 i 6 m, b ∈ Q\{a1}} . As Hα

fixes setwise C and C1 , and is transitive on both, it follows that C is Hα -neighbour transitive. By the

above reduction we only find C = {(a1, . . . , a1)} , but of course the examples here are {(a, . . . , a)} for all

a ∈ Q , as in (i). Suppose now that |C| > 2. Since C ⊆ Rep(m, q) it follows that δ = m . By Remark

2.4, C is 1-regular, and because δ = m , C is equivalent to Rep(m, q) by [10, Sec. 2]. Thus |C| = q and

C = Rep(m, q), as in (ii).
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Case k > 2 : Suppose first that p1 = 1. Then k = m and

α ∈ Ĉ =

{

All(q, q) if m = q

Inj(m, q) if m < q.

Since H fixes Ĉ and X 6 H , we have that C = αX ⊆ αH = Ĉ. If m = q then (v) holds.

Thus assume that m < q and Ĉ = Inj(m, q). In this case C1 contains ν = ν(α,m, α1) and

Num(ν) = {(2, 1), (1,m − 2)} . By Corollary 2.7, Num(ν′) = Num(ν) for all ν′ ∈ C1 , and in par-

ticular, C1∩ Ĉ = ∅ . If C is a proper subset of Ĉ then, by Lemmas 4.1 and 4.2, we have that C1∩ Ĉ 6= ∅ ,

which is a contradiction. Thus C = Inj(m, q) and (iii) holds.

We can now assume that p1 > 2. As Sm acts m-transitively, there exists σ ∈ L such that

ασ = (ap1

1 , . . . , apk

k ) ∈ Cσ . By Lemma 2.3, Cσ is Xσ -neighbour transitive, and as Diagm(Sq) is cen-

tralised by L , it follows that Xσ 6 H . Let X̄ = Xσ , ᾱ = ασ and C̄ = Cσ . Suppose that k < q . Then

q > 3 and there exists a ∈ Q that does not occur in ᾱ . Consider ν1 = (a, a
(p1−1)
1 , ap2

2 , . . . , apk

k ) and

ν2 = (a
(p1+1)
1 , a

(p2−1)
2 , . . . , apk

k ), which are both adjacent to ᾱ . Then Num(ν1), Num(ν2) and Num(ᾱ)

are pairwise distinct, which is a contradiction to Corollary 2.7. Thus k = q . If pj = p1 for all j , then

m = pq (where p = p1 ) and Num(ᾱ) = {(p, q)} . Thus ᾱ ∈ All(pq, q) and

C̄ = ᾱX̄ ⊆ ᾱH = All(pq, q).

As σ ∈ Aut(All(pq, q)), it follows that C = C̄σ−1

⊆ All(pq, q) and (v) holds. Thus we now assume that

p1 > pk . Let t be minimal such that p1 > pt , that is, p = p1 = p2 = . . . = pt−1 > pt , and note that

t > 2. Define ν1 ∈ Γ1(ᾱ) by

ν1 =

{

(ap1, . . . , a
p
t−2, a

p+1
t−1 , a

pt−1
t , . . . , a

pq

q ) if t > 3

(ap+1
1 , apt−1

t , a
pt+1

t+1 , . . . , a
pq

q ) if t = 2

and note that (p + 1, 1) ∈ Num(ν1) for all t , and (p, t − 2) ∈ Num(ν1) if t > 3, while no element of

Num(ν1) has first entry p if t = 2. As (p, t− 1) ∈ Num(ᾱ) it follows that Num(ν1) 6= Num(ᾱ), and so

Corollary 2.7 implies that ν1 ∈ C̄1 . We claim that t = 2, pt = p2 = p− 1 and q = 2.

Assume to the contrary that the claim is false. Then t , p2 , q satisfy the conditions in column 2 of

Table 1 for exactly one of the lines. For each line of Table 1, let ν2 be the vertex in column 3. In each

case ν2 ∈ Γ1(ᾱ) and Num(ν2) 6= Num(ᾱ). We also have that Num(ν1) 6= Num(ν2): this is clear in lines

2 and 3 since then no element of Num(ν2) has first entry p + 1, while in line 1, (p, t − 3) ∈ Num(ν2)

if t > 3 and no entry of Num(ν2) has first entry p if t = 3. Since Num(ν2) 6= Num(ᾱ), it follows from

Corollary 2.7 that ν2 ∈ C1 . However, Corollary 2.7 then implies that Num(ν2) = Num(ν1), which is a

contradiction. Thus the claim is proved. As t = 2, p2 = p− 1 and q = 2, it follows that m = 2p− 1 > 3

and ᾱ = (ap1, a
p−1
2 ). By identifying Q with {0, 1} , it follows that ᾱ has weight p = (m + 1)/2 or

p− 1 = (m− 1)/2, and therefore so does α = ᾱσ−1

, since σ ∈ L . Thus α ∈ W ([m/2], 2) and

C = αX ⊆ αH = W ([m/2], 2).

Let ν ∈ Γ1(α). Then ν has weight (m+3)/2 or (m−3)/2 and Num(ν) = {((m+3)/2, 1), ((m−3)/2, 1)} .

Thus Num(ν) 6= Num(α) and Corollary 2.7 implies that ν ∈ C1 . Hence Corollary 2.7 implies that

Num(ν′) = Num(ν) for all ν′ ∈ C1 , in particular C1 ∩ W ([m/2], 2) = ∅ . If C is a proper subset



DIAGONALLY NEIGHBOUR TRANSITIVE CODES AND FREQUENCY PERMUTATION ARRAYS 11

Table 1. Neighbours of ᾱ

Line Case ν2 ∈ Γ1(ᾱ)

1 t > 2 (ap+1
1 , ap−1

2 , ap3, . . . , a
p
t−1, a

pt

t , . . . , a
pq

q )

2 t = 2, p2 6 p− 2 (ap−1
1 , ap2+1

2 , ap3

3 , . . . , a
pq

q )

3 t = 2, p2 = p− 1, q > 3 (ap1, a
p
2, a

p3−1
3 , . . . , a

pq

q )

of W ([m/2], 2) then, by Lemmas 4.1 and 4.2, C1 ∩ W ([m/2], 2) 6= ∅ , which is a contradiction. Thus

C = W ([m/2], 2) and (iv) holds. �

Remark 4.4. Theorem 4.3 gives us a proof of Theorem 1.2. None of the codes in cases (i)–(iv) of

Theorem 4.3 are constant composition codes, and any subset of All(pq, q) is necessarily a frequency

permutation array.

5. Neighbour transitive frequency permutation arrays

We first consider frequency permutation arrays for which each letter from the alphabet Q appears

exactly once in each codeword. Such codes are known as permutation codes. Permutation codes were

first examined in the mid 1960s and 1970s [2, 3, 8, 19], but there has been renewed interest due to the

possible applications in powerline communication, see [1, 5, 15, 20] for example.

In order to describe permutation codes, we identify the alphabet Q with the set {1, . . . , q} and consider

codes in the Hamming graph Γ = H(q, q). For g ∈ Sq we define the vertex

α(g) = (1g, . . . , qg) ∈ V (Γ).

Recall that for a subset T ⊆ Sq , we define the permutation code generated by T to be the code

C(T ) = {α(g) ∈ V (Γ) : g ∈ T }.

For a permutation g ∈ Sq , the fixed point set of g is the set fix(g) = {a ∈ Q : ag = a} , and the degree of

g is equal to deg(g) = q − | fix(g)| . For g, h ∈ Sq , it is known that d(α(g), α(h)) = deg(g−1h) [1]. Thus,

for T ⊆ Sq , it holds that C(T ) has minimum distance δ = min{deg(g−1h) : g, h ∈ T , g 6= h} , and if T

is a group, this is called the minimal degree of T [3].

Recall that the Hamming graph Γ has automorphism group Aut(Γ) = B ⋊ L where B ∼= Sq
q and

L ∼= Sq . To distinguish between automorphisms of Γ and permutations in Sq , we introduce the following

notation. For y ∈ Sq we let xy = (y, . . . , y) ∈ B , and we let σ(y) denote the automorphism induced by

y in L . For α(g) ∈ V (Γ),

α(g)xy = (1g, . . . , qg)(y,...,y) = (1gy, . . . , qgy) = α(gy).

Now, suppose that iy = j for i, j ∈ Q . Then, by considering α(g) as the q -tuple (α1, . . . , αq), it holds

that α(g)σ(y)|j = αi = ig = jy
−1g . Thus α(g)σ(y) = α(y−1g), proving Lemma 5.1.

Lemma 5.1. Let α(g) ∈ V (Γ) and y ∈ Sq . Then α(g)xy = α(gy) and α(g)σ(y) = α(y−1g) .
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Recall from Remark 2.4 that neighbour transitive codes are 1-regular. It turns out that there exists

exactly one 1-regular permutation code with minimum distance δ = 2. Before we prove this we introduce

the following concepts. We regard 1 ∈ Q as the analogue of zero from linear codes, and define the weight

of a vertex β ∈ V (Γ) to be d(α, β), where α = (1, . . . , 1) ∈ V (Γ). For β = (βi), γ = (γi) ∈ V (Γ), we say

β is covered by γ if βi = γi for each i such that βi 6= 1. Furthermore, we say that a non-empty set D

of vertices of weight k in H(q, q) is a q -ary t − (q, k, λ) design if for every vertex ν of weight t , there

exist exactly λ vertices in D that cover ν .

Lemma 5.2. Let T be a subset of Sq . Then C(T ) is 1-regular with δ = 2 if and only if T = Sq .

Proof. The reverse direction follows from Theorem 3.3 and observing that All(q, q) = C(Sq). To prove

the converse, we first claim that there exists a positive integer λ such that |Γ2(α(t))∩C(T )| = q(q−1)λ/2

for all α(t) ∈ C(T ). The code C(T ) is equivalent to a 1-regular code C with minimum distance 2 that

contains α = (1, . . . , 1). By interpreting a result of Goethals and van Tilborg [12, Thm. 9], it follows

that Γ2(α) ∩ C forms a q -ary 1 − (q, 2, λ) design for some positive integer λ . By counting the pairs

(ν, β) ∈ Γ1(α) × (Γ2(α) ∩ C) such that β covers ν , we deduce that |Γ2(α) ∩ C| = q(q − 1)λ/2. As

C is 1-regular, this holds for all codewords β ∈ C . Furthermore, this property is also preserved by

equivalence, so the claim holds.

Let α(g1) ∈ C(T ) and S = Γ2(α(g1)) ∩ C(T ). As C(T ) is 1-regular with δ = 2, it follows that

S 6= ∅ . Let α(g2) ∈ S . Then d(α(g2g
−1
1 ), α(1)) = 2, and so g2g

−1
1 = t′ is a transposition. Consequently,

for each α(g) ∈ S there exists a transposition t ∈ Sq such that g = tg1 . There are exactly q(q − 1)/2

transpositions in Sq , so |S| 6 q(q − 1)/2. However, by the above claim, |S| > q(q − 1)/2. Thus

S = {α(tg1) : t is a transposition in Sq }. Any permutation can be written as a product of transpositions,

so for g ∈ T we have that g = t1t2 . . . tℓ for some transpositions t1, . . . , tℓ ∈ Sq . We have just shown

that t1g = t1t1t2 . . . tℓ = t2 . . . tℓ ∈ T . Repeating this argument, we first deduce that 1 ∈ T , and then

that every permutation is in T . �

Let T be a subgroup of Sq . As any group has a regular action on itself by right multiplication, it

follows from Lemma 5.1 that Diagq(T ) = {xy : y ∈ T } acts regularly on C(T ). We also define

A(T ) = {xyσ(y) : y ∈ NSq
(T )},

where NSq
(T ) = {y ∈ Sq : T y = T } . For xyσ(y) ∈ A(T ), Lemma 5.1 implies that α(t)xyσ(y) = α(y−1ty)

for all α(t) ∈ C(T ). As y ∈ NSq
(T ), we deduce that A(T ) 6 Aut(C(T ))α(1) . We now prove Theorem

1.3.

Proof. Suppose that C(T ) is diagonally X -neighbour transitive in H(q, q), and suppose first that δ = 2.

By Remark 2.4, C(T ) is 1-regular, and so Lemma 5.2 implies that T = Sq . In this case NSq
(Sq) = Sq

is 2-transitive. Now suppose that δ > 3, and consider the neighbours ν(α(1), i1, i2), ν(α(1), j1, j2) for

i1 6= i2 and j1 6= j2 . There exists x = xyσ(z) ∈ X such that ν(α(1), i1, i2)
x = ν(α(1), j1, j2), and as

x ∈ Aut(C(T )), it follows that α(t)x ∈ C(T ) for all α(t) ∈ T . By Lemma 5.1, α(t)x = α(z−1ty), so

z−1ty ∈ T for all t ∈ T . In particular, since T is a subgroup, z−1y ∈ T , and so y−1z ∈ T . Hence

y−1zz−1ty = y−1ty ∈ T for all t ∈ T , that is, y ∈ NSq
(T ). Since y−1z ∈ T it follows that z ∈ NSq

(T ).
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By Lemma 2.1, ν(α(1), i1, i2)
x = ν(α(z−1y), iz1, i

y
2), and because δ > 3 it follows that α(z−1y) = α(1).

Thus z = y , iz1 = j1 and iz2 = j2 . In particular, NSq
(T ) acts 2-transitively on Q .

Now assume that NSq
(T ) is 2-transitive, and let X = 〈A(T ),Diagq(T )〉 . As Diagq(T ) acts regularly

on C(T ), it follows that X acts transitively on C(T ). Consider ν(α(1), i1, i2), ν(α(1), j1, j2) ∈ Γ1(α(1)).

As NSq
(T ) is 2-transitive, there exists y ∈ NSq

(T ) such that iy1 = j1 and iy2 = j2 . Let

x = xyσ(y) ∈ A(T ). By Lemma 2.1, ν(α(1), i1, i2)
x = ν(α(y−1y), iy1, i

y
2) = ν(α(1), j1, j2). Thus A(T )

acts transitively on Γ1(α(1)). Because X acts transitively on C(T ), we deduce that X acts transitively

on the set of neighbours of C(T ). This proves the first statement in Theorem 1.3.

Finally suppose that C(T ) is a diagonally neighbour transitive code in H(q, q) and let p be a positive

integer. By the previous argument it follows that NSq
(T ) is 2-transitive and C(T ) is X -neighbour transi-

tive with X = 〈A(T ),Diagq(T )〉 . Moreover Xα(1) = A(T ) acts transitively on Γ1(α(1)). Thus, by Propo-

sition 2.8, Repp(C(T )) is (X × Sp)-neighbour transitive in H(pq, q), and because X 6 Diagq(Sq)⋊L it

follows that X × Sp 6 Diagpq(Sq)⋊ Spq . �
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