74 research outputs found

    Examining Evacuee Response to Emergency Communications with Agent-Based Simulations

    Get PDF
    To improve communication during emergencies, this research introduces an agent-based modeling (ABM) method to test the effect of psychological emergency communication strategies on evacuation performance. We follow a generative social science approach in which agent-based simulations allow for testing different candidate solutions. Unlike traditional methods, such as laboratory experiments and field observations, ABM simulation allows high-risk and infrequent scenarios to be empirically examined before applying the lessons in the real world. This is essential, as emergency communication with diverse crowds can be challenging due to language barriers, conflicting social identities, different cultural mindsets, and crowd demographics. Improving emergency communication could therefore improve evacuations, reduce injuries, and ultimately save lives. We demonstrate this ABM method by determining the effectiveness of three communication strategies for different crowd compositions in transport terminals: (1) dynamic emergency exit floor lighting directing people to exits, (2) staff guiding people to exits with verbal and physical instructions, and (3) public announcements in English. The simulation results indicated that dynamic emergency exit floor lighting and staff guiding people to exits were only beneficial for high-density crowds and those unfamiliar with the environment. Furthermore, English public announcements actually slowed the evacuation for mainly English-speaking crowds, due to simultaneous egress causing congestion at exits, but improved evacuation speed in multicultural, multilingual crowds. Based on these results, we make recommendations about which communication strategies to apply in the real world to demonstrate the utility of this ABM simulation approach for risk assessment practice

    Studying the Impact of Trained Staff on Evacuation Scenarios by Agent-Based Simulation

    Get PDF
    Human evacuation experiments can trigger distress, be unethical and present high costs. As a solution, computer simulations can predict the effectiveness of new emergency management procedures. This paper applies multi-agent simulation to measure the influence of staff members with diverse training levels on evacuation time. A previously developed and validated model was extended with explicit mechanisms to simulate staff members helping people to egress. The majority of parameter settings have been based on empirical data acquired in earlier studies. Therefore, simulation results are expected to be realistic. Results show that staff are more effective in complex environments, especially when trained. Not only specialised security professionals but, especially, regular workers of shopping facilities and offices play a significant role in evacuation processes when adequately trained. These results can inform policy makers and crowd managers on new emergency management procedures

    An interdisciplinary investigation of a recent submarine mass transport deposit at the continental margin off Uruguay

    Get PDF
    Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42−) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from ∼10 to >20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42− profile ∼35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re‐equilibration of SO42− the age of the most recent MTD is estimated to be <30 years. The mass movement was possibly related to an earthquake in 1988 (∼70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area

    Simulating crowd evacuation with socio-cultural, cognitive, and emotional elements

    Get PDF
    In this research, the effects of culture, cognitions, and emotions on crisis management and prevention are analysed. An agent-based crowd evacuation simulation model was created, named IMPACT, to study the evacuation process from a transport hub. To extend previous research, various socio-cultural, cognitive, and emotional factors were modelled, including: language, gender, familiarity with the environment, emotional contagion, prosocial behaviour, falls, group decision making, and compliance. The IMPACT model was validated against data from an evacuation drill using the existing EXODUS evacuation model. Results show that on all measures, the IMPACT model is within or close to the prescribed boundaries, thereby establishing its validity. Structured simulations with the validated model revealed important findings, including: the effect of doors as bottlenecks, social contagion speeding up evacuation time, falling behaviour not affecting evacuation time significantly, and travelling in groups being more beneficial for evacuation time than travelling alone. This research has important practical applications for crowd management professionals, including transport hub operators, first responders, and risk assessors
    corecore