1,978 research outputs found

    On two 10th order mock theta identities

    Full text link
    We give short proofs of conjectural identities due to Gordon and McIntosh involving two 10th order mock theta functions.Comment: 5 pages, to appear in the Ramanujan Journa

    A systematic review of the relationships between principal characteristics and student achievement

    Get PDF
    This report reviews studies that have investigated the relationships between principal characteristics (including precursors, behaviors, and leadership styles) and student achievement. Only one experimental study examined a principal intervention designed to improve student achievement. It found that grade 8 students randomly assigned to have one-on-one conversations with the principal scored higher on the state English language arts test. An additional 38 quantitative and 2 mixed method studies provided mixed evidence of the relationships between principal characteristics and student achievement; 11 qualitative studies mirrored the quantitative findings

    Orbital parameters, chemical composition, and magnetic field of the Ap binary HD 98088

    Full text link
    HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of both components using modern data. Using Least-Squares Deconvolution, we extract the longitudinal magnetic field strength of the primary component, which is observed to vary between +1170 and -920 G with a period consistent with the orbital period. There is no field detected in the secondary component. The magnetic field in the primary is predominantly dipolar, with the positive pole oriented approximately towards the secondary.Comment: Accepted for publication by MNRAS, 17 pages, 12 figure

    The magnetic field and spectral variability of the He-weak star HR 2949

    Full text link
    We analyze a high resolution spectropolarimetric dataset collected for the He-weak B3p IV star HR 2949. The Zeeman effect is visible in the circularly polarized component of numerous spectral lines. The longitudinal magnetic field varies between approximately 650-650 and +150+150 G. The polar strength of the surface magnetic dipole is calculated to be 2.40.2+0.3^{+0.3}_{-0.2} kG. The star has strong overabundances of Fe-peak elements, along with extremely strong overabundances of rare-earth elements; however, He, Al, and S are underabundant. This implies that HR 2949 is a chemically peculiar star. Variability is seen in all photospheric lines, likely due to abundance patches as seen in many Ap/Bp stars. Longitudinal magnetic field variations measured from different spectral lines yield different results, likely a consequence of uneven sampling of the photospheric magnetic field by the abundance patches. Analysis of photometric and spectroscopic data for both HR 2949 and its companion star, HR 2948, suggests a revision of HR 2949's fundamental parameters: in particular, it is somewhat larger, hotter, and more luminous than previously believed. There is no evidence of optical or ultraviolet emission originating in HR 2949's magnetosphere, despite its moderately strong magnetic field and relatively rapid rotation; however, when calculated using theoretical and empirical boundaries on the initial rotational velocity, the spindown age is compatible with the stellar age. With the extensive phase coverage presented here, HR 2949 will make an excellent subject for Zeeman Doppler Imaging.Comment: 22 pages, 21 figures, published in MNRA

    Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars

    Full text link
    We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.Comment: v2: Include comment regarding publication source To appear in the proceedings of "Solar Polarisation 4", held in Boulder, USA, Sept. 200
    corecore