1,065 research outputs found

    Optimized production of large Bose Einstein Condensates

    Full text link
    We suggest different simple schemes to efficiently load and evaporate a ''dimple'' crossed dipolar trap. The collisional processes between atoms which are trapped in a reservoir load in a non adiabatic way the dimple. The reservoir trap can be provided either by a dark SPOT Magneto Optical Trap, the (aberrated) laser beam itself or by a quadrupolar or quadratic magnetic trap. Optimal parameters for the dimple are derived from thermodynamical equations and from loading time, including possible inelastic and Majorana losses. We suggest to load at relatively high temperature a tight optical trap. Simple evaporative cooling equations, taking into account gravity, the possible occurrence of hydrodynamical regime, Feshbach resonance processes and three body recombination events are given. To have an efficient evaporation the elastic collisional rate (in s1^{-1}) is found to be on the order of the trapping frequency and lower than one hundred times the temperature in micro-Kelvin. Bose Einstein condensates with more than 10710^7 atoms should be obtained in much less than one second starting from an usual MOT setup.Comment: 14 page

    Two measures of organizational flexibility

    Get PDF
    Since the second half of the past century, increasingly flexible organizational forms are appearing among firms. However, while hierarchies are easily described, too few mathematical tools are available for flexible organizations. In this article, two measures are proposed in order to assess the state and trend of flexible organizations. The first of these measures is based on information waste, which occurs whenever information is classified into categories. The second measure is based on duplication of operations. The underlying idea is that firms have an endogenous drive towards organizational configurations where waste of information and duplication of operations are minimized. However, environmental uncertainty may require some flexibility, which is ensured by cognitive processes that discard some information as well as by parallel undertaking of similar actions

    Observation of a resonant four-body interaction in cold cesium Rydberg atoms

    Full text link
    Cold Rydberg atoms subject to long-range dipole-dipole interactions represent a particularly interesting system for exploring few-body interactions and probing the transition from 2-body physics to the many-body regime. In this work we report the direct observation of a resonant 4-body Rydberg interaction. We exploit the occurrence of an accidental quasi-coincidence of a 2-body and a 4-body resonant Stark-tuned Forster process in cesium to observe a resonant energy transfer requiring the simultaneous interaction of at least four neighboring atoms. These results are relevant for the implementation of quantum gates with Rydberg atoms and for further studies of many-body physics.Comment: 5 pages, 5 figure

    The “sant’angelo in criptis” cave church in santeramo in colle (Apulia, south italy): A multidisciplinary study for the evaluation of conservation state and stability assessment

    Get PDF
    Sant’Angelo in Criptis (Santeramo in Puglia, South Italy) is a karst cave located in the Alta Murgia National Park (aspiring geopark), presently degraded, but with signs of intense past visiting activity for worship, as testified by the beautiful wall paintings and the large number of inscriptions and engravings on the cave walls. With the aim to permit the desirable restoration and the following fruition of this ancient geo-cultural heritage, a multidisciplinary investigation of the cave was carried out in this study. The 3D cave model permitted a detailed map of the area and highlighted that the cave vault, although very regular, somewhere presents chimneys that develop upwards, indicating areas where the rock thickness is now very small. The stability analysis indicates that presently, the cave does not show remarkable signs of instability, but block failures, toppling and roof collapse are possible. Archaeometry investigations confirmed the past importance of this holy site, as testified by the overlapping in the paintings of three different pictorial cycles and the use of precious pigments, thus confirming the necessity of preservation through a conservation management strategy for a full future fruition of the cave

    Enhancement of the formation of ultracold 85^{85}Rb2_2 molecules due to resonant coupling

    Full text link
    We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state 85^{85}Rb2_2. Ultracold Rb2_2 molecules are formed by photoassociation (PA) to a coupled pair of 0u+0_u^+ states, 0u+(P1/2)0_u^+(P_{1/2}) and 0u+(P3/2)0_u^+(P_{3/2}), in the region below the 5S+5P1/25S+5P_{1/2} limit. Subsequent radiative decay produces high vibrational levels of the ground state, X1Σg+X ^1\Sigma_g^+. The population distribution of these XX state vibrational levels is monitored by resonance-enhanced two-photon ionization through the 21Σu+2 ^1\Sigma_u^+ state. We find that the populations of vibrational levels vv''=112-116 are far larger than can be accounted for by the Franck-Condon factors for 0u+(P1/2)X1Σg+0_u^+(P_{1/2}) \to X ^1\Sigma_g^+ transitions with the 0u+(P1/2)0_u^+(P_{1/2}) state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of 0u+0_u^+ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two 0u+0_u^+ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.Comment: 6 pages, 5 figures; corrected author lis
    corecore