215 research outputs found
Some remarks about the positivity of random variables on a Gaussian probability space
Let be an abstract Wiener space and be a probability density
of class LlogL. Using the measure transportation of Monge-Kantorovitch, we
prove that the kernel of the projection of L on the second Wiener chaos defines
an (Hilbert-Schmidt) operator which is lower bounded by another Hilbert-Schmidt
operator.Comment: 6 page
Flows driven by Banach space-valued rough paths
We show in this note how the machinery of C^1-approximate flows devised in
the work "Flows driven by rough paths", and applied there to reprove and extend
most of the results on Banach space-valued rough differential equations driven
by a finite dimensional rough path, can be used to deal with rough differential
equations driven by an infinite dimensional Banach space-valued weak geometric
Holder p-rough paths, for any p>2, giving back Lyons' theory in its full force
in a simple way.Comment: 8 page
Nonlinear Young integrals via fractional calculus
For H\"older continuous functions and , we define
nonlinear integral via fractional calculus. This
nonlinear integral arises naturally in the Feynman-Kac formula for stochastic
heat equations with random coefficients. We also define iterated nonlinear
integrals.Comment: arXiv admin note: substantial text overlap with arXiv:1404.758
Perimeter of sublevel sets in infinite dimensional spaces
We compare the perimeter measure with the Airault-Malliavin surface measure
and we prove that all open convex subsets of abstract Wiener spaces have finite
perimeter. By an explicit counter-example, we show that in general this is not
true for compact convex domains
The Monge problem in Wiener Space
We address the Monge problem in the abstract Wiener space and we give an
existence result provided both marginal measures are absolutely continuous with
respect to the infinite dimensional Gaussian measure {\gamma}
Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
This paper is devoted to a deeper understanding of the heat flow and to the
refinement of calculus tools on metric measure spaces (X,d,m). Our main results
are:
- A general study of the relations between the Hopf-Lax semigroup and
Hamilton-Jacobi equation in metric spaces (X,d).
- The equivalence of the heat flow in L^2(X,m) generated by a suitable
Dirichlet energy and the Wasserstein gradient flow of the relative entropy
functional in the space of probability measures P(X).
- The proof of density in energy of Lipschitz functions in the Sobolev space
W^{1,2}(X,d,m).
- A fine and very general analysis of the differentiability properties of a
large class of Kantorovich potentials, in connection with the optimal transport
problem.
Our results apply in particular to spaces satisfying Ricci curvature bounds
in the sense of Lott & Villani [30] and Sturm [39,40], and require neither the
doubling property nor the validity of the local Poincar\'e inequality.Comment: Minor typos corrected and many small improvements added. Lemma 2.4,
Lemma 2.10, Prop. 5.7, Rem. 5.8, Thm. 6.3 added. Rem. 4.7, Prop. 4.8, Prop.
4.15 and Thm 4.16 augmented/reenforced. Proof of Thm. 4.16 and Lemma 9.6
simplified. Thm. 8.6 corrected. A simpler axiomatization of weak gradients,
still equivalent to all other ones, has been propose
- …
