927 research outputs found

    RX J0440.9+4431: a persistent Be/X-ray binary in outburst

    Get PDF
    The persistent Be/X-ray binary RX J0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities Swift, RXTE, XMM-Newton, and INTEGRAL. We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~2e36 erg/s. The luminosity dependency of the size of the black body emission region is found to be rBBLX0.39±0.02r_{BB} \propto L_X^{0.39\pm0.02}. This suggests that either matter accreting onto the neutron star hosted in RX J0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the neutron star magnetic field is more complicated than a simple dipole close to the surfaceComment: Accepted for publication by A&

    Glancing through the accretion column of EXO 2030+375

    Full text link
    We took advantage of the large collecting area and good timing capabilities of the EPIC cameras on-board XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high mass X-ray binary EXO 2030+375 during the rise of a source Type-I outburst in 2014. We carried out a timing and spectral analysis of the XMM-Newton observation as function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering fully the source and one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. The XMM-Newton data caught the source at an X-ray luminosity of 2×10362\times10^{36} erg s1^{-1} and revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (\gtrsim2×10372\times10^{37} erg s1^{-1}).Comment: Accepted for publication on A&

    Broad-band characteristics of seven new hard X-ray selected cataclysmic variables

    Get PDF
    Indexación: Web of Science; Scopus.We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM–Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ∼296–6098 s, identifying them as members of the magnetic class. Swift J0927.7−6945, Swift J0958.0−4208, Swift J1701.3−4304, Swift J2113.5+5422 and possibly PBC J0801.2−4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7−6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3−4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7−6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ∼ 1022 − 23 cm−2). In Swift J0958.0−4208 and Swift J1701.3−4304, a soft X-ray blackbody (kT ∼ 50 and ∼80 eV) is detected, adding them to the growing group of ‘soft’ IPs. White dwarf masses are determined in the range of ∼0.58–1.18 M, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3−1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.https://academic.oup.com/mnras/article/470/4/4815/390658

    Development and Validation of a Spike Detection and Classification Algorithm Aimed at Implementation on Hardware Devices

    Get PDF
    Neurons cultured in vitro on MicroElectrode Array (MEA) devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line and real time analysis, optimization of memory use and data transmission rate improvement become necessary. We developed an algorithm for amplitude-threshold spikes detection, whose performances were verified with (a) statistical analysis on both simulated and real signal and (b) Big O Notation. Moreover, we developed a PCA-hierarchical classifier, evaluated on simulated and real signal. Finally we proposed a spike detection hardware design on FPGA, whose feasibility was verified in terms of CLBs number, memory occupation and temporal requirements; once realized, it will be able to execute on-line detection and real time waveform analysis, reducing data storage problems

    Peptide aptamers as new tools to modulate clathrin-mediated internalisation--inhibition of MT1-MMP internalisation.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Peptide aptamers are combinatorial protein reagents that bind to targets with a high specificity and a strong affinity thus providing a molecular tool kit for modulating the function of their targets in vivo. RESULTS: Here we report the isolation of a peptide aptamer named swiggle that interacts with the very short (21 amino acid long) intracellular domain of membrane type 1-metalloproteinase (MT1-MMP), a key cell surface protease involved in numerous and crucial physiological and pathological cellular events. Expression of swiggle in mammalian cells was found to increase the cell surface expression of MT1-MMP by impairing its internalisation. Swiggle interacts with the LLY573 internalisation motif of MT1-MMP intracellular domain, thus disrupting the interaction with the mu2 subunit of the AP-2 internalisation complex required for endocytosis of the protease. Interestingly, swiggle-mediated inhibition of MT1-MMP clathrin-mediated internalisation was also found to promote MT1-MMP-mediated cell migration. CONCLUSIONS: Taken together, our results provide further evidence that peptide aptamers can be used to dissect molecular events mediated by individual protein domains, in contrast to the pleiotropic effects of RNA interference techniques

    INTEGRAL probes the morphology of the Crab nebula in hard X-rays/soft gamma-rays

    Full text link
    Aims. We use the IBIS/ISGRI telescope on-board INTEGRAL to measure the position of the centroid of the 20-200 keV emission from the Crab region. Methods. We find that the astrometry of the IBIS telescope is affected by the temperature of the IBIS mask during the observation. After correcting for this effect, we show that the systematic errors in the astrometry of the telescope are of the order of 0.5 arcsec. In the case of the Crab nebula and several other bright sources, the very large number of photons renders the level of statistical uncertainty in the centroid smaller or comparable to this value. Results. We find that the centroid of the Crab nebula in hard X-rays (20-40 keV) is shifted by 8.0 arcsec with respect to the Crab pulsar in the direction of the X-ray centroid of the nebula. A similar shift is also found at higher energies (40-100 and 100-200 keV). We observe a trend of decreasing shift with energy, which can be explained by an increase in the pulsed fraction. To differentiate between the contribution of the pulsar and the nebula, we divide our data into an on-pulse and off-pulse sample. Surprisingly, the nebular emission (i.e., off-pulse) is located significantly away from the X-ray centroid of the nebula. Conclusions. In all 3 energy bands (20-40, 40-100, and 100-200 keV), we find that the centroid of the nebula is significantly offset from the predicted position. We interpret this shift in terms of a cut-off in the electron spectrum in the outer regions of the nebula, which is probably the origin of the observed spectral break around 100 keV. From a simple spherically-symmetric model for the nebula, we estimate that the electrons in the external regions of the torus (d ~ 0.35 pc from the pulsar) reach a maximal energy slightly below 10^14 eV.Comment: 7 pages, 8 figures, accepted for publication in A&

    The 2015 outburst of the accreting millisecond pulsar IGR J17511-3057 as seen by INTEGRAL, Swift and XMM-Newton

    Get PDF
    We report on INTEGRAL, Swift and XMM-Newton observations of IGR J17511-3057 performed during the outburst that occurred between March 23 and April 25, 2015. The source reached a peak flux of 0.7(2)E-9 erg/cm2^2/s and decayed to quiescence in approximately a month. The X-ray spectrum was dominated by a power-law with photon index between 1.6 and 1.8, which we interpreted as thermal Comptonization in an electron cloud with temperature > 20 keV . A broad ({\sigma} ~ 1 keV) emission line was detected at an energy (E = 6.90.3+0.2^{+0.2}_{-0.3} keV) compatible with the K{\alpha} transition of ionized Fe, suggesting an origin in the inner regions of the accretion disk. The outburst flux and spectral properties shown during this outburst were remarkably similar to those observed during the previous accretion event detected from the source in 2009. Coherent pulsations at the pulsar spin period were detected in the XMM-Newton and INTEGRAL data, at a frequency compatible with the value observed in 2009. Assuming that the source spun up during the 2015 outburst at the same rate observed during the previous outburst, we derive a conservative upper limit on the spin down rate during quiescence of 3.5E-15 Hz/s. Interpreting this value in terms of electromagnetic spin down yields an upper limit of 3.6E26 G/cm3^3 to the pulsar magnetic dipole (assuming a magnetic inclination angle of 30{\deg}). We also report on the detection of five type-I X-ray bursts (three in the XMM-Newton data, two in the INTEGRAL data), none of which indicated photospheric radius expansion.Comment: 10 pages, 7 figures, accepted for publication in A&

    Giant outburst of EXO 2030+375: pulse-phase resolved analysis of INTEGRAL data

    Full text link
    In June-September 2006 the Be/X-ray binary EXO 2030+375 experienced the second giant outburst since its discovery. The source was shown to have a complicated pulse-averaged X-ray spectral continuum with possible evidence of cyclotron absorption features. In this paper we present the first pulse-phase resolved analysis of the broad band X-ray spectra of EXO 2030+375 obtained with the INTEGRAL observatory close to the maximum and during the decay phase of the giant outburst. We report a strong variability of the spectrum with pulse phase. Alternative spectral continuum models are discussed. The dependence of the spectral parameters on pulse phase during the maximum of the outburst and the evolution of the pulse profiles with time are qualitatively consistent with the pulsar's emission diagram changing from the fan-beam geometry close to the maximum of the outburst to a combination of pencil and fan beams (of comparable intesities) at the end of the decay phase. Evidence of a cyclotron absorption line around 63 keV at the pulse phase interval preceeding the main peak of the pulse profile is present in the spectrum obtained close to the maximum of the outburst.Comment: 8 pages, 10 figures, accepted for publication in A&

    Design of a Virtual Reality-based Framework for Supporting the Work Reintegration of Wheelchair Users

    Get PDF
    Accidents at work often lead the involved people to severe impairments, which can seriously compromise their life and their work activities. Various studies have proven that, for disabled people, being employed contributes to a better quality of life, thus it is important to give them the opportunity to continue their profes-sional career. This paper presents a framework aimed at supporting the training and the work-reintegration of people that, after an accident, are forced to use a wheelchair. In the proposed work, the Virtual Reality is the leading technology for allowing the wheelchair users to be trained in simulated environments where, in safe conditions, they become aware of their capabilities, while facing different challenging situations. More-over, the behaviour of the users is tracked during the whole training session for monitoring, processing and assessing, through semantic models, their functional level and the jobs that are still suitable for them
    corecore