17,985 research outputs found

    Research on WASH sector, environment and water resources in the Central Rift Valley of Ethiopia

    Get PDF
    Peer ReviewedPostprint (published version

    Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices

    Get PDF
    We present an ab-initio analysis of the impact of edge shape and graphene-molecule anchor coupling on the electronic and transport functionalities of graphene-based molecular electronics devices. We analyze how Fano-like resonances, spin filtering and negative differential resistance effects may or may not arise by modifying suitably the edge shapes and the terminating groups of simple organic molecules. We show that the spin filtering effect is a consequence of the magnetic behavior of zigzag-terminated edges, which is enhanced by furnishing these with a wedge shape. The negative differential resistance effect is originated by the presence of two degenerate electronic states localized at each of the atoms coupling the molecule to graphene which are strongly affected by a bias voltage. The effect could thus be tailored by a suitable choice of the molecule and contact atoms if edge shape could be controlled with atomic precision.Comment: 11 pages, 20 figure

    Can simple models explain Zipf’s law for all exponents?

    Get PDF
    H. Simon proposed a simple stochastic process for explaining Zipf’s law for word frequencies. Here we introduce two similar generalizations of Simon’s model that cover the same range of exponents as the standard Simon model. The mathematical approach followed minimizes the amount of mathematical background needed for deriving the exponent, compared to previous approaches to the standard Simon’s model. Reviewing what is known from other simple explanations of Zipf’s law, we conclude there is no single radically simple explanation covering the whole range of variation of the exponent of Zipf’s law in humans. The meaningfulness of Zipf’s law for word frequencies remains an open question.Peer ReviewedPostprint (published version

    Degree-scale anomalies in the CMB: localizing the first peak dip to a small patch of the north ecliptic sky

    Full text link
    Noticeable deviations from the prediction of the fiducial LCDM cosmology are found in the angular power spectrum of the CMB. Besides large-angle anomalies, the WMAP 1st year data revealed a dip in the power spectrum at l \sim 200, which seemed to disappear in the 3rd year and subsequent angular power spectra. Using the WMAP 1st, 3rd, and 5th year data as well as the 5 year coadded data, we study the intensity and spatial distribution of this feature in order to unveil its origin and its implications for the cosmological parameters. We show that in all WMAP data releases there is a substantial suppression of the first Doppler peak in a region near the north ecliptic pole.Comment: 8 pages, submitted to Phys. Rev.

    Boundary Effects in 2+1 Dimensional Maxwell-Chern-Simons Theory

    Get PDF
    The boundary effects in the screening of an applied magnetic field in a finite temperature 2+1 dimensional model of charged fermions minimally coupled to Maxwell and Chern-Simons fields are investigated. It is found that in a sample with only one boundary -a half-plane- a total Meissner effect takes place, while in a sample with two boundaries -an infinite strip- the external magnetic field partially penetrates the material.Comment: revte

    Universality in the transport response of molecular wires physisorbed onto graphene electrodes

    Get PDF
    We analyze the low-voltage transport response of large molecular wires bridging graphene electrodes, where the molecules are physisorbed onto the graphene sheets by planar anchor groups. In our study, the sheets are pulled away to vary the gap length and the relative atomic positions. The molecular wires are also translated in directions parallel and perpendicular to the sheets. We show that the energy position of the Breit-Wigner molecular resonances is universal for a given molecule, in the sense that it is independent of the details of the graphene edges, gaps lengths or of the molecule positions. We discuss the need to converge carefully the k-sampling to provide reasonable values of the conductance.Comment: 6 pages, 6 figure

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Mesons and diquarks in neutral color superconducting quark matter with β\beta-equilibrium

    Get PDF
    The spectrum of meson and diquark excitations in cold color-superconducting (2SC) quark matter is investigated under local color and electric neutrality constraints with β\beta-equilibrium. A 2-flavored Nambu--Jona-Lasinio type model including a baryon μB\mu_B, color μ8\mu_8, and electric μQ\mu_Q chemical potentials is used. Two relations between coupling constants HH and GG in the diquark- and quark-antiquark channels, correspondingly, are treated, H=3G/4H=3G/4 and H=GH=G. At H=3G/4H=3G/4 the gapless- and at H=GH=G the gapped neutral color superconductivity is realized. It is shown that color and electrical neutrality together with β\beta-equilibrium lead to a strong mass splitting within the pion isotriplet in the 2SC phase (both gapped and gapless), in contrast with non--neutral matter. It is also shown that the properties of the physical SU(2)cSU(2)_c-singlet diquark excitation in the 2SC ground state varies for different parameterization schemes. Thus, for H=3G/4H=3G/4 one finds a heavy resonance with mass \sim 1100 MeV in the non--neutral (gapped) case, whereas, if neutrality is imposed, a stable diquark with mass μQ\sim\mu_Q\sim 200 MeV appears in the gapless 2SC phase. For H=GH=G, there is again a resonance (with the mass \sim 300 MeV) in the neutral gapped 2SC phase. Hence, the existence of the stable massive SU(2)c_c-singlet diquark excitation is a new peculiarity of the gapless 2SC.Comment: 18 pages, 9 figures; version accepted for publication in PR

    Symmetry-induced interference effects in metalloporphyrin wires

    Full text link
    Organo-metallic molecular structures where a single metallic atom is embedded in the organic backbone are ideal systems to study the effect of strong correlations on their electronic structure. In this work we calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched by gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT+U approaches. The zero bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes qualitatively the conductance and spin-filtering behavior in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets
    corecore