321 research outputs found

    Did the Hilda collisional family form during the late heavy bombardment?

    Full text link
    We model the long-term evolution of the Hilda collisional family located in the 3/2 mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the Yarkovsky/YORP effect and assuming that: (i) impact disruption was isotropic, and (ii) albedo distribution of small asteroids is the same as for large ones, we can estimate the age of the Hilda family to be 41+0Gyr4_{-1}^{+0}\,{\rm Gyr}. We also calculate collisional activity in the J3/2 region. Our results indicate that current collisional rates are very low for a 200\,km parent body such that the number of expected events over Gyrs is much smaller than one. The large age and the low probability of the collisional disruption lead us to the conclusion that the Hilda family might have been created during the Late Heavy Bombardment when the collisions were much more frequent. The Hilda family may thus serve as a test of orbital behavior of planets during the LHB. We tested the influence of the giant-planet migration on the distribution of the family members. The scenarios that are consistent with the observed Hilda family are those with fast migration time scales 0.3Myr\simeq 0.3\,{\rm Myr} to 3Myr3\,{\rm Myr}, because longer time scales produce a family that is depleted and too much spread in eccentricity. Moreover, there is an indication that Jupiter and Saturn were no longer in a compact configuration (with period ratio PS/PJ>2.09P_{\rm S}/P_{\rm J} > 2.09) at the time when the Hilda family was created

    LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection

    Full text link
    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction, Conclusions, reference added, accepted for publication in Classical and Quantum Gravit

    Colovesical fistulae in the sigmoid diverticulitis

    Get PDF
    Nella maggior parte dei casi le fistole colovescicali rappresentano una complicanza della malattia diverticolare e sono la tipologia più comune di fistola colodigestiva; meno comuni sono le fistole colovaginali, colocutanee, coloenteriche e colouterine. Nel presente lavoro abbiamo effettuato una review della letteratura riguardante le fistole colovescicali in chirurgia colorettale per diverticolite del sigma. Decriviamo anche due casi che hanno richiesto un trattamento chirurgico, in uno in elezione e nell’altro in urgenza. In entrambi i casi abbiamo eseguito una resezione colica con anastomosi primaria e minimaresezione vesvicale con posizionamento di catetere di Foley in media per 10 giorni

    CAROTID INTIMAL-MEDIA THICKNESS AND ENDOTHELIAL FUNCTION IN YOUNG PATIENTS WITH HISTORY OF MYOCARDIAL INFARCTION.

    Get PDF
    AIM: The aim of the study was to evaluate the prevalence of carotid atherosclerosis and endothelial dysfunction in 45 young patients (38 mens and 7 females) with myocardial infarction (MI), age 29-45, mean age 42+/-3 years, to verify its possible role as a marker of coronary atherosclerosis. METHODS: Vascular echography was performed to verify the presence of carotid atherosclerosis and/or endothelial dysfunction in 45 young patients with MI and in 45 healthy control subjects well matched for age and sex. RESULTS: We observed a normal intima media thickness (IMT) only in 30% of patients with juvenile myocardial infarction (JMI) compared with 66% in the control group (P<0.0001) and 34% of patients showed an increased IMT compared with 24% of healthy subjects (P<0.0001). Compared with control subjects, patients with JMI had lower flow-mediated reactivity of the brachial arteries (P<0.05). There was a negative linear relationship between flow-mediated dilation and IMT (P<0.001). The severity of coronary artery disease (CAD) was correlated with increased IMT and with a lower flow-mediated dilation. Finally, multiple regression analysis, demonstrated that both brachial-artery reactivity and carotid IMT were significantly and independently correlated with severity of CAD. CONCLUSIONS: Structural (carotid atherosclerosis) and functional changes (endothelial dysfunction) were present at an early age in the arteries of persons with history of JMI

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Exploiting Textons Distributions on Spatial Hierarchy for Scene Classification

    Get PDF
    This paper proposes a method to recognize scene categories using bags of visual words obtained by hierarchically partitioning into subregion the input images. Specifically, for each subregion the Textons distribution and the extension of the corresponding subregion are taken into account. The bags of visual words computed on the subregions are weighted and used to represent the whole scene. The classification of scenes is carried out by discriminative methods (i.e., SVM, KNN). A similarity measure based on Bhattacharyya coefficient is proposed to establish similarities between images, represented as hierarchy of bags of visual words. Experimental tests, using fifteen different scene categories, show that the proposed approach achieves good performances with respect to the state-of-the-art methods

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
    corecore