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  ABSTRACT 

  Body condition score (BCS) is considered an impor-
tant tool for management of dairy cattle. The feasibil-
ity of estimating the BCS from digital images has been 
demonstrated in recent work. Regression machines have 
been successfully employed for automatic BCS estima-
tion, taking into account information of the overall 
shape or information extracted on anatomical points 
of the shape. Despite the progress in this research area, 
such studies have not addressed the problem of model-
ing the shape of cows to build a robust descriptor for 
automatic BCS estimation. Moreover, a benchmark 
data set of images meant as a point of reference for 
quantitative evaluation and comparison of different 
automatic estimation methods for BCS is lacking. The 
main objective of this study was to develop a technique 
that was able to describe the body shape of cows in a 
reconstructive way. Images, used to build a benchmark 
data set for developing an automatic system for BCS, 
were taken using a camera placed above an exit gate 
from the milking robot. The camera was positioned at 
3 m from the ground and in such a position to capture 
images of the rear, dorsal pelvic, and loin area of cows. 
The BCS of each cow was estimated on site by 2 techni-
cians and associated to the cow images. The benchmark 
data set contained 286 images with associated BCS, 
anatomical points, and shapes. It was used for quan-
titative evaluation. A set of example cow body shapes 
was created. Linear and polynomial kernel principal 
component analysis was used to reconstruct shapes of 
cows using a linear combination of basic shapes con-
structed from the example database. In this manner, 
a cow’s body shape was described by considering her 
variability from the average shape. The method pro-
duced a compact description of the shape to be used for 

automatic estimation of BCS. Model validation showed 
that the polynomial model proposed in this study per-
forms better (error = 0.31) than other state-of-the-art 
methods in estimating BCS even at the extreme values 
of BCS scale. 
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  INTRODUCTION 

  Body condition score is widely considered an im-
portant tool for management of dairy cattle because 
it is a simple and repeatable system used to evaluate 
body fat stores and changes in BCS can be used to 
estimate cumulative energy balance (Otto et al., 1991; 
Ferguson et al., 1994). Visual and tactile methods have 
been used to estimate BCS. Generally, the score range 
used by dairy management advisors applies a numerical 
scale, with thin animals receiving lower scores and fat 
animals receiving higher scores. The system described 
by Wildman et al. (1982), later modified by Edmon-
son et al. (1989) and Ferguson et al. (1994) was based 
on a scale from 1 to 5, with 1 representing emaciated 
cows and 5 representing obese cows, without palpat-
ing the animal. According to Ferguson et al. (1994), it 
is possible to separate BCS into 0.25-point increments 
between scores of 2 to 4; however, this degree of resolu-
tion may not be possible with BCS of <2 and >4. It 
is generally considered that cows with a BCS of >3.5 
are too fat and that cows having a BCS of <2.5 are too 
thin (Domecq et al., 1997a,b). 

  Despite the consensus of dairy producers, nutrition-
ists, consultants, and herd managers, on the benefits 
of the BCS evaluation, less than 5% of US dairy farms 
have adopted this practice as an on-farm routine prac-
tice (J. D. Ferguson, unpublished data). Many reasons 
discourage the use of the traditional BCS evaluation 
techniques: among them is the lack of computerized 
reports (Ward, 2003), the subjectivity in the judgment 
that can lead to different scores for the same cow under 
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consideration, and the complex as well as time con-
suming on-farm training of technicians. Furthermore, 
measurements on a cow must be collected every 30 d 
throughout the lactation cycle to have valuable infor-
mation (Hady et al., 1994), thus increasing the cost and 
complexity of BCS data.

Interest in collecting information on body condition 
is increasing for use in selection indices, because selec-
tion for production traits has increased reliance of cows 
on body reserves in early lactation to support milk 
production (Agnew and Yan, 2000; Coffey et al., 2003). 
Furthermore, BCS is highly related to reproductive 
performance: thinner cows experience more reproduc-
tive difficulties (Pryce et al., 2000), whereas increasing 
BCS has positive associations with days to first heat, 
interval to first service, and conception rate at first 
service, and negative associations with calving interval 
and number of services per cow (Agnew and Yan, 2000; 
Pryce et al., 2000; Dechow et al., 2002; Pryce et al., 
2002; Berry et al., 2003; Wall et al. 2003). For this 
reason, genetic variation in BCS could be included in 
genetic indexes as an indirect trait for more balanced 
selection strategies aimed at simultaneously increasing 
milk production and improving reproductive perfor-
mance and health (Bastin et al., 2010). The ability 
to automatically record BCS would increase its use in 
farm management and enable large volumes of data to 
be collected for use in national evaluations.

Recent studies have addressed the problem of BCS 
estimation directly from digital images. Ferguson et al. 
(2006) assessed the ability to assign a BCS to a dairy 
cow from digital photographs. In that study, BCS could 
be assessed by observers from digital photographs or 
a video taken from the rear of a cow at a 0 to 20° 
angle relative to the tail head. A sample size of 30% 
was adequate to estimate the mean BCS of a group of 
cows. Bewley et al. (2008) assessed the feasibility of 
using digital images to determine BCS using a semiau-
tomatic estimation technique from digital images. They 
considered a single image of the dorsal view of the cow 
captured automatically as cows passed through a weigh 
station and used 23 anatomical points to define the 
shape of the body of the cow. These points, selected in 
a manual way, were used to compute 15 angles around 
the hooks, pins, and tailhead. All identifiable points 
were used to define and formulate measures describ-
ing the cow’s contour. Halachmi et al. (2008) tested 
the hypothesis that the body shape of a fatter cow is 
rounder than that of a thin cow and, therefore, may 
better fit a parabolic shape. Images were acquired by 
means of a thermal camera that allowed a very simple 
and straightforward shape extraction. The posterior 
part of the cow was considered and a parabolic fitting 
was performed. The absolute difference between the 

real body shape and the fitted parabola was used to 
estimate BCS for a cow.

Despite the progress in this research area, such 
studies have not adequately addressed the problem of 
modeling the shape of a cow’s body to build a robust 
descriptor for automatic BCS estimation. Among the 
visual cues used by humans, shape provides important 
information to distinguish between objects of different 
categories (Belongie et al., 2002) as well as information 
that is relevant to understand the differences in the ap-
pearance of an object within a specific class (Cootes et 
al., 2001). In computer vision literature, several shape 
descriptors have been proposed (Persoon and Fu, 1977; 
Cootes et al., 1992, 2001; Belongie et al., 2002; Di Fabio 
et al., 2009). More specifically, shape descriptors based 
on principal component analysis (PCA; Cootes et al., 
1992, 2001) are used to consider the different variability 
of anatomical landmarks with respect to the average 
shape.

The aim of the present study was to develop a tech-
nique to model the body shape of a cow from which 
learned parameters could be used in BCS estimation. 
A further objective was to build a benchmark data 
set useful for dairy cattle research purposes, available 
through the Internet.

MATERIALS AND METHODS

System Overview

A general scheme of the system for semiautomatic 
evaluation of the BCS from digital images is shown 
in Figure 1. The system consists of 2 different blocks: 
training (TB) and employing (EB). The TB is used to 
learn the parameters of the model exploited to infer the 
BCS from features extracted on digital images. The pa-
rameters are learned by using a set of labeled examples. 
Once the training is completed, the learned parameters 
are used in the model to infer the BCS of new samples 
during the employing phase. Both TB and EB use the 
same hardware infrastructure (e.g., parameters of digi-
tal camera, position of the digital camera).

Each block is composed of different modules organized 
in a sequential pipeline. The TB is composed of 3 mod-
ules as follows: acquisition of training examples, label-
ing of anatomical features, and learning the BCS model 
parameters. The acquisition module (AM) is used to 
acquire images to be used as examples in learning the 
model parameters. The example cow images generated 
to be used in the AM should include the range of the 
number and variety of samples to be acquired. This set 
of acquired images should be representative of the pos-
sible BCS values. During the AM, technicians should 
evaluate BCS on site of the involved cows to build a 
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consistent labeled data set containing images with the 
corresponding BCS. To build a system capable to infer 
the BCS from anatomical features of cows (e.g., hook 
angles), the features must be first labeled by experts 
and then used to learn the parameters of the chosen 
BCS model. In the labeling module, an expert uses 
an interface to mark the anatomical features of inter-
est on the acquired digital images. The main labeled 
components are related to the features that should be 
taken into account to assess BCS. Several experts and 
technicians (at least 2) should be used independently in 
the labeling phase to guarantee that the final labeled 
data set is not biased by subjectivity of only one techni-
cian. The learning module is devoted to establishing 
the set of parameters involved in the BCS model (e.g., 
regressor on anatomical points) from the labeled data 
set. The training block uses the learning and acquisi-
tion modules to construct the parameters of a model to 
estimate the BCS of a cow from the images labeled by 
the expert(s).

The EB is composed of 3 sequential modules: acqui-
sition of a new unlabeled image of a cow, identification 
and labeling of anatomical features of the image, and 
application of the model generated in the learning 
phase to assign a BCS to the image (and, therefore, 
cow).

Barn Description and Image Acquisition

The experiment was performed in a dairy farm lo-
cated in Comiso (Ragusa, Italy) with 74 first parity 
lactating Holstein-Friesian cows, housed in a freestall 
barn with access to a pair of milking robots (DeLaval 
VMS, Tumba, Sweden).

Images were acquired by means of a standard network 
digital camera (AXIS 213 PTZ, Lund, Sweden), with 
pan and tilt functions. This camera could be monitored 
from the local area network or from the Internet and 
could switch between color images during daytime, and 
black/white images in low light conditions (or night-
time) using the built-in infrared lighting. The camera 
also offered an application programming interface 
(API) for software integration and its resolution was 
704 × 480 pixels at up to 30 frames/s for the National 
Television System Committee (NTSC, the standard to 
create, transmit, and receive video streams in North 
America and Japan), and 768 × 576 pixels at up to 25 
frames/s for the Phase Alternating Line system (PAL, 
the standard for video transmission used in Europe).

The camera was positioned to capture images dor-
sally from 3 m above cows as they passed through the 
exit gate from the pair of milking robots. The choice 
of this specific gate guaranteed that all of the lactating 
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Figure 1. The scheme of a system for semiautomatic estimation of BCS. HW = hardware.



cows present in that group were examined at least once 
per day. Cows were constrained briefly at the exit gate 
for a few seconds, which allowed image capture from a 
relatively stationary cow.

Images were acquired at an average frame-rate of 12 
frames per second from April 4 through May 6, 2009 
during 2 time periods: from 1000 to 1400 h during 
daylight and from 2000 to 0000 h to acquire images 
under 2 different illumination conditions. All images 
were saved locally and then processed offline. Cows 
were not restricted based on coat color (cows had vari-
able combinations of white to black markings), coat 
condition (sleekness of hair coat), or age and size for 
sample collection.

Cow Identification and Manual  
Body Condition Scoring

At the beginning of the acquisition step, 2 technicians 
were employed to identify the cows at the exit alley of 
the milking robot. The clocks of both the image acqui-
sition system and the technicians were synchronized. 
Technicians filled out a report with one record for each 
cow involved in the experiment. The report contained 
the cow identification (ID) from a neck collar, BCS 
assessed by the observer (estimated according to Fergu-
son et al., 1994), and timestamp. Once the report was 
completed, the assigned BCS were properly associated 
to the acquired cow’s image by using the timestamp. 
This procedure produced a data set of 29 images (one 
for each cow involved in the experiment) labeled with 
the mean BCS estimated by the 2 technicians.

Image Selection

During each sample collection period, the image 
acquisition system gathered a huge amount of data 
(approximately 172,800 images for each acquisition 
interval). On average, for each acquisition period, 31 
images actually contained a cow in the frame: therefore, 
the final number of peaks to take into account was set 
to 40 per acquisition interval in order not to lose useful 
images. The selection of the images containing cows 
was a critical issue that could not be addressed manu-
ally. To overcome this problem, a 3-step algorithm was 
developed to select only those images that contained 
a cow image for analysis. First, a filtering procedure 
was used employing absolute interframe error (E) or 
frame difference, which is the analysis of the difference 
between corresponding pixels in adjacent frames, ac-
cording to Gonzalez and Woods (2008):

 E I i j I i jt t
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Figure 2. Absolute interframe error relative to a series of selected 
frames (a), local variance analysis (b), and differences between the 
identified background frame and the other selected frames (c). The 
peak indicates the image that differs more with respect to the back-
ground (i.e., the image that contains the whole cow). The circle in (b) 
indicates a plateau in which images are strongly related to consecutive 
background frames.



where It and It+1 are 2 consecutive M × N frames and (i, 
j) indicates the pixel position within the frames. When 
a cow passes through the gate, the absolute interframe 
error typically has higher values compared with the 
absolute interframe error comparing frames without a 
cow (background images). For an acquisition period of 
4 h, a peak and valley plot was obtained. Each peak 
represented an image containing a cow, whereas the 
valley represented a background image.

After identifying the highest peak images, an auto-
matic process selected a fixed number of images around 
the peak (200 in our implementation). The image cor-
responding to the peak might not represent the best 
image to be used for BCS estimation (e.g., only part of 
the cow could be visible). The best image to use for BCS 
had to be selected from the 200 selected images. The 
mean absolute interframe error (Figure 2a) was then 
employed as a starting point for local variance analysis 
from the 200 images (i.e., the variance was computed 
considering a sliding window of 20 elements). The pla-
teau was strongly related to consecutive background 
frames (as highlighted in Figure 2b). A background 
frame (Bg) was selected from this uniform region and 
the difference between all of the selected frames and 
Bg was computed (Figure 2c). The peak indicated the 
frame that differed the most with respect to Bg: the 
corresponding frame, therefore, probably contained the 
whole cow.

To cope with motion blur, focus, and other acquisi-
tion problems, 5 frames around the identified frame 
were selected. Finally, the best frame was manually 
identified among the 5 frames. Human interaction was, 
therefore, present only at the end of the process and 
was related to a small subset of frames (5 × 40 per 4 h 
of acquisition).

Anatomical Points Labeling

An ad hoc JAVA application was implemented to 
label the 23 anatomical points useful for BCS estima-
tion according to Bewley et al. (2008). This software 
is available, upon registering, for download at http://
www.corfilac.it/bcs/software.html, subject to the gen-
eral public license (GPL). The graphical user interface 
is shown in Figure 3. The main window was divided 
into 4 areas: lower areas show a reference figure and 
a legend of the key points to locate; upper areas show 
the image of a cow to be labeled and the labeled point 
currently identified.

An image is automatically loaded from a user-spec-
ified directory and presented in the box in the upper 
left corner (Figure 3). All 23 anatomical landmarks to 
be marked are listed in the legend in the order in which 

they are to be identified. To select a point, the user uses 
a mouse to point to a region and right clicks on the 
mouse to record the location. The selection of a point 
activates 2 buttons (upper right quadrant in Figure 3): 
the first cancels the point previously identified, whereas 
the second permits acceptance of the new point identi-
fied and enables the user to move forward (labeling 
errors can be immediately corrected). A counter in the 
top right box records the anatomical landmarks as they 
are identified by the user (Figure 3). Once the twenty-
third anatomical point was confirmed, the software 
performed a consistency check of the selected points, 
identifying the most likely errors in their placement or-
der (e.g., points from 1 to 9 should have an increasing 
abscissa).

Shape Alignment

To obtain a consistent shape representation, location, 
scale and rotational effects were filtered out by aligning 
the corresponding anatomical landmarks of the dif-
ferent involved shapes. The alignment of shapes was 
carried out by establishing a coordinate reference (po-
sition, scale, and rotation, commonly known as pose) 
to which all shapes referred. The reference anatomical 
landmarks were the fore ribs, the tail, and the right and 
left hook, as highlighted in Figure 4a.

Because the anatomical landmarks that define the 
shapes refer to the image coordinate system, at first, 
shapes were translated to the origin (Figure 4b). Shapes 
were then rotated such that the left ileal tuberosity 
(hook bone) and the right ileal tuberosity (hook bone) 
had the same horizontal coordinate (Figure 4c). To 
perform translation and rotation of shapes, the middle 
point between the left hook bone and the right hook 
bone was taken into account. The choice of the mid-
point between the hook bones provided a fixed point of 
reference for performing translation and rotation of the 
body image with respect to this point so that the shapes 
just differed on scale, which could be scaled to fit in a 
unit square (Figure 4d). The landmarks with minimum 
and maximum values of x coordinates were used to 
scale the shape with respect to the x-axis, whereas the 
landmarks with minimum and maximum values of y 
coordinates were used to scale the shape with respect 
to the y-axis. The scaling of shapes makes the system 
invariant to scale. In this way, the system can be used 
independently from the distance of the camera from the 
ground floor without running again any learning phase. 
After alignment, all of the shapes referred to the same 
coordinate system (centered into the origin) and could 
be modeled by using the statistics on the 23 anatomical 
landmarks.
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PCA-Based Shape Descriptor

We started by considering the following shape defini-
tion: shape is all of the geometrical information that 
remains when location, scale, and rotational effects are 
filtered out from an object (Dryden and Mardia, 1998). 
Shapes are typically represented by locating a finite 
number of landmarks on the outline of an object. The 
mathematical representation for n landmarks located 
into the shape of an object is a 2n-dimensional column 
vector:

s = [x1, x2,…, xn, y1, y2,…, yn]
T =  

[s1, s2,…, sn, sn+1, sn+2,…, s2n]
T,

where (xi,yi) for i = 1, …, n, are the coordinates of the 
n landmarks and T indicates the transpose operator of 
vectors. Let S = {s1,…, sm}, a set of shapes, and S′ = 
{s′1, …, s′m}, the set of shapes obtained through the 
alignment procedure. The mean shape of S′ corresponds 
to the vector that minimizes the sum of the squared-
error criterion function with respect to the shapes in S′. 
Hence, the sample mean s'  is the zero-dimensional 
descriptor of the data set S′ and can be considered as a 
prototype of the data, in the sense that it is the most 

similar to all of the samples in the data set, but it does 
not reveal any of the variability in the data. The modes 
of variations, the ways in which the points of the shape 
tend to move with respect to the average shape, can be 
found by applying PCA to the deviations from the 
mean s'  (Cootes et al., 1992; Cootes et al., 2001; Steg-
mann and Gomez 2002). More specifically, taking into 
account the 2n × 2n covariance matrix C, built taking 
into account the samples in S′, the modes of variation 
of the points of the shapes are described by the unit 
eigenvectors of C, such that
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where λi is the ith eigenvalue of C. The eigenvectors 
ei of the covariance matrix corresponding to the larg-
est eigenvalues describe the most significant modes of 
variations in the variables used to derive the covariance 
matrix.

Kernel PCA-Based Shape Descriptor

Kernel PCA has been successfully used for statistical 
shape analysis (Rathi et al., 2006; Sahbi, 2007). Kernel 
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Figure 3. The JAVA interface of the labeling software used to mark the 23 anatomical points.



PCA is the extension of PCA to deal with nonlinear 
cases using the technique of kernel methods. The basic 
idea behind kernel methods is to map the data in the 
input space (S′ in our case) using a nonlinear function Φ 
and then apply a linear method to do further analysis.

Let Φ Φ: R Rn n2 →  be a mapping function in the real 
numbers space acting on the input space S′. Kernel 
PCA finds the principal axes by diagonalizing the cova-
riance matrix CΦ, built taking into account the samples 
in SΦ

' .  The modes of variation into the kernel space are 
described by the unit eigenvectors of CΦ, such that

 
CΦ

Φ Φ Φ
Φ

Φ Φ
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where λi
Φ  is the ith eigenvalue of CΦ. The eigenvectors 

ei
Φ of the covariance matrix corresponding to the largest 

eigenvalues describe the most significant modes of 
variations in the variables used to derive the covariance 
matrix CΦ.

Note that PCA is a particular instance of the kernel-
ized method and the possible mapping function is Φ(x) 
= x.

In our experiments, we used kernel PCA to model the 
shape of cows. Specifically, we used a linear (ΦLinear (x) 
= x for x = [x1,x2]) and a polynomial mapping function 

ΦPolynomial x x x x( ) [ , , ] .x =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1

2
2
2

1 22

Evaluation

The PCA and kernel PCA-based shape descriptor 
methods were evaluated by comparing them to other 
existing methods of BCS scoring using digital images 
(Bewley et al., 2008 and Halachmi et al., 2008) from 
the database used in this study.

In the first study, the authors considered a single im-
age of the dorsal view of the cow and used 23 anatomical 
points to define the shape of the body of the cow. These 
points, selected in a manual way, were used to compute 
15 angles around the hooks, pins, and tailhead. The 
authors considered the symmetry of the cow shape to 
obtain 7 composite angles averaging the left and right 
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Figure 4. Anatomical landmarks in a cow body shape (a), shape translation (b), shape rotation (c), and shape scaling (d).



angles of the shape. The related proposed models are 
reported below:

yij = μ + Cowi + β1HAij + β2PHAij  

+ β3(HA × PHA)ij + eij (Bewley 1)

yij = μ + Cowi + β1HAij + β2PHAij + β3(HA × PHA)ij  

+ β4TDij + β5(PHA × TD)ij + eij (Bewley 2),

where yij is the jth BCS of the ith cow estimated by 
technicians; μ, β1, β2, β3, β4,and β5 are the regression 
parameters; Cowi is the identifier of the ith cow; eij is 
the residual error; HAij is the average hook angle; PHAij 
is the average posterior hook angle; and TDij is the aver-
age tailhead depression. In this experiment, based on 
a training system, the term Cowi in the Bewley 1 and 
Bewley 2 equations could not be taken into account in 
testing the models because this value does not provide 
anatomical information useful for BCS estimation. 
Technicians do not use the ID of the cow to estimate the 
BCS and if in the training phase the ID was included in 
the learning process, the BCS of a new cow (never cap-
tured by the system) could not be estimated. Moreover, 
we think that by knowing the ID of the cow, particularly 
when BCS is assessed over time, the BCS estimation 
could be biased from 2 sources, one from the techni-
cal observers biased by the prior BCS of a particular 
cow, and second, by the machine algorithm. Because 
the machine algorithm learns parameters of the model 
from BCS, when cow ID are associated a priori with a 
BCS, changes over time within a cow may be masked by 
linking BCS with cow ID. Cow BCS must be assigned 
before linking with cow ID to minimize this bias.

In the second study, the posterior part of the cow was 
considered and a parabolic fitting was performed. The 
absolute differences between the real body shape and 
the fitted parabola were used in the BCS estimation as 
follows:

 BCS B
MAEThermal fit= × ×5

1
 (modified Halachmi), 

where Bfit is the best fit reached in the herd, MAE is the 
mean absolute error, and 5 is a normalization factor. 
In our evaluation phase, we implemented a modified 
version of Halachmi. Parabolic fitting and BCS estima-
tion were performed considering only the labeled points 
because we did not use a thermal camera to acquire im-
ages and, therefore, shape extraction from those images 
was a complex task not addressed in this study.

The mean BCS estimation error was defined as:

 BCSError
N

BCS i BCS iest tec
i

N

= −
=
∑1

1

( ) ( ),  

where N is the number of images (i.e., 286), BCSest 
and BCStec were the BCS values estimated from digital 
images and the mean BCS manually evaluated by tech-
nicians, respectively.

Validation

To assess the effectiveness of the methods, the leave 
one out cross validation (LOOCV) procedure (Webb, 
2002) and the regression error characteristic curves 
(REC; Bi and Bennett, 2003) were used. Each run of 
LOOCV involved a single observation of the data set as 
test data, and the remaining samples as training data. 
This was repeated to guarantee that each sample was 
used once as the test data. The average error rate was 
computed taking into account all runs. The REC curve 
is essentially the cumulative distribution function of the 
error. It was derived by plotting the errors tolerance 
versus the percentage of samples predicted within the 
tolerance. The area over the curve is a biased estimation 
of the expected error of an employed regression model. 
This technique enabled simple assessment of different 
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Table 1. Means ± SD, and range (in parentheses) for milk yield, fat and protein percentage, and BCS 

DIM  
class n

Milk  
(kg)

Fat  
(%)

Protein  
(%) BCS

<60 14 24.9 ± 6.7 3.50 ± 1.26 3.13 ± 0.22 2.89 ± 0.20
  (14.8–34.7) (2.11–6.99) (2.90–3.69) (2.50–3.25)
61–120 12 30.6 ± 5.7 3.31 ± 0.69 3.33 ± 0.31 3.01 ± 0.48
  (21.0–38.4) (2.05–4.39) (2.87–4.10) (2.25–4.00)
121–200 29 31.3 ± 5.5 3.36 ± 0.64 3.33 ± 0.27 3.25 ± 0.55
  (22.6–42.0) (2.04–4.78) (2.82–3.83) (2.50–4.75)
>200 19 30.2 ± 4.4 3.41 ± 0.63 3.42 ± 0.24 3.49 ± 0.42
  (24.4–41.1) (2.50–4.74) (3.02–3.76) (3.00–4.25)



regression models by examining the relative position of 
their REC curves.

RESULTS AND DISCUSSION

Data

During the experiment, 74 first-parity lactating cows 
were observed (Table 1). For each 4-h acquisition time-
frame (2 × 26 d), 172,800 images were gathered. The 
first filtering step using interframe error detected 40 
peaks and, for each peak, 200 images were selected. 
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Figure 5. a) Predicted (Halachmi model) versus actual BCS (es-
timated by technicians). b) Predicted (Bewley model 1) versus actual 
BCS (estimated by technicians). c) Predicted (Bewley model 2) versus 
actual BCS (estimated by technicians).

Figure 6. a) Predicted (linear kernel principal component analysis, 
or PCA) versus actual BCS (estimated by 2 technicians). b) Predicted 
(polynomial kernel PCA) versus actual BCS (estimated by techni-
cians). 



The automatic filtering process led to a final set with 
10,400 images. Not all images of an acquisition interval 
could be used because of blurring and dirtiness due 
to automatic washing of the barn. The final data set 
contained, therefore, only 286 manually chosen im-
ages, corresponding to 29 different cows. All of the 286 
selected images were used in the subsequent analysis 
and stored together with the related data (anatomi-
cal points and BCS) in a database available at http://
www.corfilac.it/bcs/.

Shape Descriptor

The eigenvectors { }ei
Φ Φ
i
n
=1  useful to describe the shapes 

were computed using kernel PCA. Assuming zero mean, 
any shape in the training set mapped into the kernel 
space through Φ can, therefore, be generated as a linear 
combination of the eigenvectors obtained through ker-
nel PCA.

This means that the eigenvectors { }ei
Φ Φ
i
n
=1  constitute 

a basis of the space of shapes into the kernel space 
Φ(S′) useful to generate new samples. Unseen shapes in 
the kernel space can be generated by changing the val-
ues of each component ai

Φ,  taking into account that its 

variance is represented by λi
Φ.  Because most of the 

samples of the training set lie within 3 standard devia-
tions of the mean, the suitable range for ai

Φ  is 

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 3λ λi i
Φ Φ, .  The range of each ai

Φ  can be used to 

detect outliers that, in our case, are probably due to 
error in manual labeling.

Given a training set of cow shapes, kernel PCA can 
be applied after alignment and, hence, each shape sj

'  

can be described by using the vector a j j j na aΦ Φ Φ

Φ
= [ ,..., ]., ,1  

The shape descriptors of the training set can be used 
together with a linear regressor to build a system for 
BCS estimation:

 BCS a w a w a w wj j n n j n n j= + + + +− −, , ,... .
Φ Φ Φ Φ

Φ Φ Φ
1 1 1 1 0  

Given the descriptors of the shapes in the training 
set, the regression model can be fitted by using a least 
squares method. The learned parameters [ , ,..., ]w w wn0 1 Φ

 

are then used to infer the BCS of new shape samples, 
describing them by using the basis [ ,..., ]e e1

Φ Φ

Φn
 learned 

on the training set.

Validation

In the validation step, BCS was estimated using the 4 
different models over the images of the training set and 
errors were averaged for all runs of LOOCV. Among 
the methods, the modified Halachmi method reported 
the biggest error (0.98), whereas errors for both Bewley 
1 and Bewley 2 models and our linear and polynomial 
kernel PCA were 0.33, 0.32, and 0.31 respectively. The 
modified Halachmi approach was not able to provide 
satisfactory results (Figure 5a): the parabolic fitting 
might be not accurate enough because it was performed 
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Figure 7. Polynomial kernel principal component analysis (PCA) 
approach (dash-dot line) versus Bewley model 2 (dashed line).

Figure 8. Regression error characteristic curves (REC) of the dif-
ferent models involved in the comparison. PCA = principal component 
analysis.



considering only the labeled points. Bewley 1 and Be-
wley 2 models obtained similar results (model 2 was 
slightly better than the model 1; Figure 5b and Figure 
5c). Their performances are better for the central BCS 
values (around 3.5) and worst in the extreme cases (2.5 
and 4.5). Our approach, in particular the polynomial 
one, performed better than the other techniques, ob-
taining satisfactory results even in the extreme cases. 
Results of our approach are reported in Figure 6a and 
Figure 6b. As shown in Figure 7, our approach using a 
polynomial kernel is able to follow the ideal line better 
than do the Bewley 1 and Bewley 2 approaches. In Fig-
ure 8 the comparison through the REC curve confirms 
that the proposed approach performs better than do 
state-of-the-art methods in estimating BCS.

CONCLUSIONS

The cow body shape was described, considering the 
deviation from the average shape in the kernel space. 
The method produced a description of the shape to be 
used for automatic estimation of BCS. Experimental 
results confirm the effectiveness of the proposed ap-
proach. Body condition score estimation systems that 
work fully automatically (with no user intervention) or 
at least semiautomatically (with minimal user interven-
tion) are desired in order to cut down time and costs of 
the traditional BCS estimation techniques. Moreover, 
these systems can produce an objective evaluation of 
BCS in a way that is less invasive for the cows. The 
main drawback of a semiautomatic system for BCS 
estimation is the manual labeling of anatomical points 
during training and employing phases. Future work will 
be devoted in building a fully automatic system for 
BCS evaluation in which the shape of a cow will be au-
tomatically extracted from digital images acquired with 
a low-cost camera through a segmentation procedure. 
The automatic extraction of the whole shape could 
be also useful to build a more robust model for BCS 
estimation by using more anatomical points, automati-
cally extracted. Finally, a benchmark data set useful for 
dairy cattle research purposes, available through the 
Internet, was built.
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