2,277 research outputs found
A Hierarchy of Transport Approximations for High Energy Heavy (HZE) Ions
The transport of high energy heavy (HZE) ions through bulk materials is studied neglecting energy dependence of the nuclear cross sections. A three term perturbation expansion appears to be adequate for most practical applications for which penetration depths are less than 30 g per sq cm of material. The differential energy flux is found for monoenergetic beams and for realistic ion beam spectral distributions. An approximate formalism is given to estimate higher-order terms
Cloaking dielectric spherical objects by a shell of metallic nanoparticles
We show that dielectric spheres can be cloaked by a shell of amorphously
arranged metallic nanoparticles. The shell represents an artificial medium with
tunable effective properties that can be adjusted such that the scattered
signals of shell and sphere almost cancel each other. We provide an analytical
model for the cloak design and prove numerically that the cloak operates as
desired. We show that more than 70% of the scattered signal of the sphere can
be suppressed at the design wavelength. Advantages and disadvantages of such a
cloak when compared to other implementations are disclosed.Comment: 14 pages, 6 figure
BDDC and FETI-DP under Minimalist Assumptions
The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary
simple abstract form. It is shown that their properties can be obtained from
only on a very small set of algebraic assumptions. The presentation is purely
algebraic and it does not use any particular definition of method components,
such as substructures and coarse degrees of freedom. It is then shown that
P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard
condition number bound carries over to arbitrary abstract operators of this
form. The equality of eigenvalues of BDDC and FETI-DP also holds in the
minimalist abstract setting. The abstract framework is explained on a standard
substructuring example.Comment: 11 pages, 1 figure, also available at
http://www-math.cudenver.edu/ccm/reports
Long-time Behavior of a Two-layer Model of Baroclinic Quasi-geostrophic Turbulence
We study a viscous two-layer quasi-geostrophic beta-plane model that is
forced by imposition of a spatially uniform vertical shear in the eastward
(zonal) component of the layer flows, or equivalently a spatially uniform
north-south temperature gradient. We prove that the model is linearly unstable,
but that non-linear solutions are bounded in time by a bound which is
independent of the initial data and is determined only by the physical
parameters of the model. We further prove, using arguments first presented in
the study of the Kuramoto-Sivashinsky equation, the existence of an absorbing
ball in appropriate function spaces, and in fact the existence of a compact
finite-dimensional attractor, and provide upper bounds for the fractal and
Hausdorff dimensions of the attractor. Finally, we show the existence of an
inertial manifold for the dynamical system generated by the model's solution
operator. Our results provide rigorous justification for observations made by
Panetta based on long-time numerical integrations of the model equations
Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production
The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it cools. We will not deal with that concept in this article. Further research is needed to determine the rates at which these composite clusters form, evaporate, and segregate
Cavitation Bubble Dynamics inside Liquid Drops in Microgravity
We studied spark-generated cavitation bubbles inside water drops produced in microgravity. High-speed visualizations disclosed unique effects of the spherical and nearly isolated liquid volume. In particular, (1) toroidally collapsing bubbles generate two liquid jets escaping from the drop, and the "splash jet" discloses a remarkable broadening. (2) Shockwaves induce a strong form of secondary cavitation due to the particular shockwave confinement. This feature offers a novel way to estimate integral shockwave energies in isolated volumes. (3) Bubble lifetimes in drops are shorter than in extended volumes in remarkable agreement with herein derived corrective terms for the Rayleigh-Plesset equation
Recommended from our members
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process.
To understand the impact of epigenetics on human misfolding disease, we apply Gaussian-process regression (GPR) based machine learning (ML) (GPR-ML) through variation spatial profiling (VSP). VSP generates population-based matrices describing the spatial covariance (SCV) relationships that link genetic diversity to fitness of the individual in response to histone deacetylases inhibitors (HDACi). Niemann-Pick C1 (NPC1) is a Mendelian disorder caused by >300 variants in the NPC1 gene that disrupt cholesterol homeostasis leading to the rapid onset and progression of neurodegenerative disease. We determine the sequence-to-function-to-structure relationships of the NPC1 polypeptide fold required for membrane trafficking and generation of a tunnel that mediates cholesterol flux in late endosomal/lysosomal (LE/Ly) compartments. HDACi treatment reveals unanticipated epigenomic plasticity in SCV relationships that restore NPC1 functionality. GPR-ML based matrices capture the epigenetic processes impacting information flow through central dogma, providing a framework for quantifying the effect of the environment on the healthspan of the individual
A ferrofluid based neural network: design of an analogue associative memory
We analyse an associative memory based on a ferrofluid, consisting of a
system of magnetic nano-particles suspended in a carrier fluid of variable
viscosity subject to patterns of magnetic fields from an array of input and
output magnetic pads. The association relies on forming patterns in the
ferrofluid during a trainingdphase, in which the magnetic dipoles are free to
move and rotate to minimize the total energy of the system. Once equilibrated
in energy for a given input-output magnetic field pattern-pair the particles
are fully or partially immobilized by cooling the carrier liquid. Thus produced
particle distributions control the memory states, which are read out
magnetically using spin-valve sensors incorporated in the output pads. The
actual memory consists of spin distributions that is dynamic in nature,
realized only in response to the input patterns that the system has been
trained for. Two training algorithms for storing multiple patterns are
investigated. Using Monte Carlo simulations of the physical system we
demonstrate that the device is capable of storing and recalling two sets of
images, each with an accuracy approaching 100%.Comment: submitted to Neural Network
Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach
This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations
- …
