
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-018-0607-5

ORIGINAL ARTICLE

Three‑dimensional CFD simulations with large displacement
of the geometries using a connectivity‑change moving mesh
approach

Nicolas Barral1  · Frédéric Alauzet2

Received: 8 January 2018 / Accepted: 26 March 2018
© The Author(s) 2018

Abstract
This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displace-
ments on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust
moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in
previous works, which removes the need for global remeshing when performing large displacements. The optimizations,
and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We
propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabili-
ties in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law
to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven
by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered.
Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and
industrial configurations.

Keywords  Moving mesh · Dynamic mesh · Connectivity change · Compressible flows · ALE: Arbitrary Lagrangian
Eulerian · Discrete geometric conservation law · Fluid–structure interaction · 6-DOF

1  Introduction

Fluid–structure interaction (FSI) simulations are required
for a wide variety of subjects, from the simulation of jel-
lyfish [23] to the releasing of a missile [47]. The recent
development of computing capacities has made it possi-
ble to run increasingly complex simulations where mov-
ing bodies interact with an ambient fluid in an unsteady
way. However, engineers are still far from performing such
simulations on a daily basis, largely due to the difficulty

of handling the moving meshes induced by the moving
geometries.

When the displacement of the geometry is small enough,
slightly deforming the original mesh [9, 19] can generally
be acceptable. But when large deformation of the bounda-
ries is considered, the mesh quickly becomes distorted and
the numerical error due to this distortion quickly becomes
too great, until the elements of the mesh finally become
invalid, and the simulation has to be stopped. Specific
strategies need to be developed to deal with large displace-
ment moving boundary problems. In the case of FSI prob-
lems, another difficulty arises from the fact that the dis-
placement of the boundaries is by definition an unknown,
and the deformation of the mesh cannot be imposed a
priori. Addressing the issue of the mesh movement can-
not be separated from addressing the issue of the solver
that will compute on these moving meshes. Depending on
the strategy employed to deal with the movement, specific
numerical methods must be designed to take into account
the displacement of the mesh. The question this paper
focuses on is: how can we efficiently move the mesh for

 *	 Nicolas Barral
	 n.barral@imperial.ac.uk

	 Frédéric Alauzet
	 Frederic.Alauzet@inria.fr

1	 Department of Earth Science and Engineering, Imperial
College London, London SW7 2AZ, UK

2	 Gamma3 Team, Inria Saclay Ile-de-France, 91 126 Palaiseau,
France

http://orcid.org/0000-0003-2079-5819
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0607-5&domain=pdf

	 Engineering with Computers

1 3

large displacement 3D FSI simulations and what numerical
schemes need to be associated to such a strategy?

Three main approaches to address the mesh movement
problem can be found in the literature. The first approach
consists in having a single body-fitted mesh [11, 29], and
moving it along with the moving boundaries. The mesh
may thus undergo large deformation. The second approach
is the Chimera (or overset) method [12], in which each
moving body has its own body-fitted sub-mesh, and the
sub-meshes move rigidly together with their body and
can overlap one another. Finally the embedded boundary
approach [14, 39] uses meshes that are not body-fitted at
all: the bodies are embedded in a fixed grid, and techniques
such as level-sets are used to recover their moving bounda-
ries. All three approaches have their own strengths and
weaknesses. This paper is aligned with our previous works
on anisotropic mesh adaptation, with the ultimate goal to
use moving geometries in our adaptation framework [8].
For this reason, we focus on body-fitted approaches with
one single mesh.

The first strategy to handle body-fitted moving meshes
is simply to move the mesh for as long as possible, and
remesh (i.e., generate a whole new mesh or a part of it)
when the mesh quality becomes critical [11, 29]. For each
remeshing, the simulation has to be stopped, a new mesh
must be generated, and the solution must be transferred to
the new mesh. This approach can be efficient, especially
when small displacements are considered and very few
remeshings are necessary, because the solver and the mesh-
ing aspects are decoupled, and between two remeshings the
simulation is fully ALE and free from interpolation errors.
However, for larger displacements, the number of remesh-
ings increases to prevent invalid elements from appearing,
and this can both be costly and result in poor accuracy due
to the solution transfer step. Hence a second strategy has
been developed [16, 20], based on the use of local remeshing
operations, such as vertex insertion, vertex collapse, connec-
tivity changes and vertex displacements, to preserve a good
mesh quality throughout the simulation. The advantage of
this method is that it maintains an acceptable mesh quality
without needing to stop, remesh and resume the simulation.
However, it requires fully dynamic mesh data structures that
are permanently updated, which can lead to a loss of CPU
efficiency, and the numerous mesh modifications can lead
to a loss of accuracy.

Our approach tries to overcome to these drawbacks and
is described in detail in [1]. It aims at moving meshes with
large displacements of the geometry without ever having to
remesh. [By remeshing, we mean stopping the simulation,
generating a new mesh (the entire mesh or part of it) and
interpolating the solution on the new mesh.] A limited set
of mesh modifications are used to preserve the mesh quality
throughout the simulation: only connectivity changes (edge

swaps) and vertex displacement are performed. This is for
several reasons. Notably, performing local mesh modifica-
tions within the solver is far simpler than remeshing glob-
ally, and connectivity changes can be relatively simply inter-
preted in terms of evanescent cells for purposes of Arbitrary
Lagrangian Eulerian (ALE) numerical schemes. In many
body-fitted moving mesh strategies, a lot of CPU time is
dedicated to computing the displacement of the mesh, in
order to make it follow the moving boundaries. Thanks to
frequent mesh optimizations, the cost of this step is reduced
by computing the mesh deformation for a large number of
solver time steps (i.e., we do it only a few times during the
simulation). It is important to note that this approach works
best if vertex-centered solvers are considered, because the
connectivity changes preserve the number of degrees of
freedom.

Some studies try to impose a mesh motion that is directly
adapted to the physical phenomena in question, using for
instance either so-called Moving Mesh PDEs [32] or a
Monge–Ampère equation [15]. However, interesting these
approaches may be, they still seem to be time-consuming,
especially in 3D, due to the solution of a non-linear equation,
and it is unsure whether they can handle complex 3D geom-
etries. Therefore we prefer to prescribe arbitrary movements
to the mesh, and use our mesh adaptation framework [42]
when necessary.

Regarding numerical solvers, we consider a classic frame-
work for moving meshes: the Arbitrary Lagrangian Eulerian
(ALE) framework, which is based on a formulation of the
equations that takes into account an arbitrary movement of
the vertices. This technique was introduced in the 1970s
in [21, 31, 33]. Since then, so many developments have been
made in that field that a complete list of them would not fit
in this paper. However, one may in particular refer to [11,
24, 25, 29, 30, 46, 49], which mainly focus on improving
temporal schemes for ALE simulations.

To our knowledge, very few examples of ALE solvers
coupled with connectivity-change moving mesh techniques
can be found in literature. In [36] a conservative interpola-
tion is proposed to handle the swaps. In [28, 51] an ALE
formulation of the swap operator is built. However, these
studies are limited to 2D. Driven by the requirements of
industry, we are interested in designing a method that works
in 3D. In this paper, a linear interpolation is carried out after
each swap instead of using a specific ALE formulation, and
we will evaluate the numerical error due to these swaps.

The goal of the present paper is to demonstrate that
three-dimensional FSI simulations can be run efficiently by
coupling an ALE solver to our connectivity-change mov-
ing mesh strategy. The first part of this paper focuses on
recalling important aspects of the moving mesh algorithm.
The second, third and fourth parts describe in detail the
solver used. In the fifth part, some validation test cases are

Engineering with Computers	

1 3

presented, and finally some examples of complex 3D ALE
simulations are given and analyzed. In this paper, we only
focus on rigid movements that are involved in rigid-body
FSI.

2 � Mesh‑connectivity‑change moving mesh
strategy

To handle moving boundaries, we adopt a body-fitted
approach, with a single mesh: the inner vertices of the
mesh are moved following the moving boundaries to pre-
serve the validity of mesh (i.e., to prevent the mesh from
getting tangled). Our strategy involves two main parts:

•	 Computing the mesh deformation Inner vertices are
assigned a trajectory depending on the displacement
of the boundaries, and thus a position for future time
steps.

•	 Optimizing the mesh The trajectories computed in the
mesh deformation phase are corrected, and the connec-
tivity of the mesh is modified to preserve the quality of
the mesh.

This strategy, detailed below, has proven to be very power-
ful in 3D [1], since large displacement of complex geom-
etries can be performed while preserving a good mesh
quality without any global remeshing (i.e., without ever
generating a whole new mesh).

2.1 � Linear elasticity mesh deformation method

During the mesh deformation step, a displacement field is
computed for the whole computational domain, given the
displacement of its boundaries. Trajectories can thus be
assigned to inner vertices, or in other words, positions at
a future solver time step.

Several techniques can be found to compute this dis-
placement field: implicit or direct interpolation [13, 44],
or solving PDEs—the most common of which being
Laplacian smoothing [40], a spring analogy [19] and a
linear elasticity analogy [6]. It is this last method that we
selected, due to its robustness in 3D [58]. The compu-
tational domain is assimilated to a soft elastic material,
which is deformed by the displacement of its boundaries.

The inner vertices movement is obtained by solving an
elasticity-like equation with a ℙ1 finite element method
(FEM):

(1)div(�()) = 0, with  =
∇� + T∇�

2
,

where � and  are, respectively, the Cauchy stress and strain
tensors, and � is the Lagrangian displacement of the vertices.
The Cauchy stress tensor follows Hooke’s law for an iso-
tropic homogeneous medium. Dirichlet boundary conditions
are used and the displacement of vertices located on the
domain boundary is strongly enforced in the linear system.
The linear system is solved by a conjugate gradient algo-
rithm coupled with an LU-SGS pre-conditioner. An advan-
tage of elasticity-like methods is the opportunity they offer
to adapt the local material properties of the mesh, especially
its stiffness, according to the distortion and efforts borne by
each element. In particular, the stiffness of the elements is
increased for small elements, in order to limit their distor-
tion. More details can be found in [1].

2.2 � Improving mesh deformation algorithm
efficiency

The computation of the mesh deformation—here the solu-
tion of a linear elasticity problem—is known to be an expen-
sive part of dynamic mesh simulations, and the fact that it
is usually performed at every solver time step makes it all
the more so.

We propose to combine several techniques to improve
the time efficiency of this step. Some regions are rigidi-
fied, more specifically a few layers around tiny complex
details of the moving bodies, with very small elements.
They are moved with exactly the same rigid displace-
ment as the corresponding body, thus avoiding very stiff
elements in the elasticity matrix. On the other hand, the
elasticity can be solved only on a reduced region, if the
domain is big compared to the displacement. A coarse
mesh can also be used to solve the elasticity problem, the
displacement of the vertices then being interpolated on the
computational mesh.

The major improvement we proposed is to reduce the
number of mesh deformation computations: the elasticity
problem is solved for a large time frame of length Δt instead
of doing it at each solver time step �t . While there is a risk
of a less effective mesh displacement solution, it is a worth-
while strategy if our methodology is able to handle large
displacements while preserving the mesh quality. Solving
the previously described mesh deformation problem once
for large time frame could be problematic in the case of: (1)
curved trajectories of the boundary vertices and (2) acceler-
ating bodies. To enhance the mesh deformation prescription,
accelerated-velocity curved, i.e., high-order, vertex trajec-
tories are computed.

The paths of inner vertices can be improved if a constant
acceleration � is provided to each vertex in addition to its
speed, which results in an accelerated and curved trajectory.

	 Engineering with Computers

1 3

During time frame [t, t + Δt] , the position and the velocity
of a vertex are updated as follows:

Prescribing a velocity vector and an acceleration vector
to each vertex requires solving two elasticity systems. For
both systems, the same matrix, thus the same pre-condi-
tioner, is considered. Only boundary conditions change.
If inner vertex displacement is sought for time frame
[t, t + Δt], boundary conditions are imposed by the location
of the body at time t + Δt∕2 and t + Δt. These locations are
computed using body velocity and acceleration. Note that
solving the second linear system is cheaper than solving
the first one as a good prediction of the expected solution
can be obtained from the solution of the first linear system.
Now, to define the trajectory of each vertex, the velocity
and acceleration are deduced from evaluated middle and
final positions:

In this context, it is mandatory to make sure that the mesh
remains valid for the whole time frame [t, t + Δt], which is
done by computing the sign of the volume of the elements
all along their path [1].

2.3 � Local mesh optimization

In order to preserve the mesh quality between two mesh defor-
mation computations, it has been proposed [1] to couple mesh
deformation with local mesh optimization using smoothing
and generalized swapping to efficiently achieve large displace-
ment in moving mesh applications. Connectivity changes
are really effective in handling shear and removing highly
skewed elements. Here, we briefly recall the mesh optimiza-
tion procedure.

For 3D meshes, the quality of an element is measured in
terms of the element shape by the quality function:

where �(�) and |K| are edge length and element volume.
Q(K) = 1 corresponds to a perfectly regular element and
Q(K) < 2 corresponds to excellent quality elements, while
a high value of Q(K) indicates a nearly degenerated element.

�(t + �t) =�(t) + �t �(t) +
�t2

2
�

�(t + �t) =�(t) + �t �.

Δt �(t) = − 3 �(t) + 4�(t + Δt∕2) − �(t + Δt)

Δt2

2
� =2�(t) − 4�(t + Δt∕2) + 2�(t + Δt).

(2)
Q(K) =

√
3

216

�∑6

i=1
�
2(�i)

� 3

2

�K� ∈ [1, +∞],

The first mesh optimization tool is vertex smoothing which
consists in relocating each vertex inside its ball of elements,
i.e., the set of elements having Pi as their vertex. For each
tetrahedron Kj of the ball of Pi , a new optimal position Popt

j
 for

Pi can be proposed to form a regular tetrahedron:

where Fj is the face of Kj opposite vertex Pi , Gj is the center
of gravity of Fj , �j is the inward normal to Fj and �(�j) the
length of �j . The final optimal position Popt

i
 is computed as

a weighted average of all these optimal positions {Popt

j
}Kj⊃Pi

 ,

the weight coefficients being the quality of Kj . This way, an
element of the ball is all the more dominant if its quality in
the original mesh is bad. Finally, the new position is ana-
lyzed: if it improves the worst quality of the ball, the vertex
is directly moved to its new position.

The second mesh optimization tool to improve mesh qual-
ity is generalized swapping/local-reconnection (Fig. 1). Let
� and � be the two tetrahedra vertices opposite the common
face P1P2P3 . Face swapping consists of suppressing this face
and creating the edge � = �� . In this case, the two original
tetrahedra are deleted and three new tetrahedra are created.
This swap is called 2 → 3 . The reverse operator can also
be defined by deleting three tetrahedra sharing such a com-
mon edge �� and creating two new tetrahedra sharing face
P1P2P3 . This swap is called 3 → 2.

A generalization of this operation exists and acts on shells
of tetrahedra [1, 26]. For an internal edge � = �� , the shell
of � is the set of tetrahedra having � as common edge. The
different edge swaps are generally denoted n → m, where n

P
opt

j
= Gj +

√
2

3

�j

�(�j)
,

3 → 2

3 ← 2
(face swapping)

5 → 6

5 possible triangulations

e e

e

Fig. 1   Top left, the swap operation in two dimensions. Top right,
edge swap of type 3 → 2 and face swap 2 → 3 . Bottom left, the five
possible triangulations of the pseudo-polygon for a shell having five
elements. Bottom right, an example of 5 → 6 edge swap. For all these
figures, shells are in black, old edges are in red, new edges in green
and the pseudo-polygon is in blue. (Color figure online)

Engineering with Computers	

1 3

is the size of the shell and m is the number of new tetrahedra.
In this work, edge swaps 3 → 2 , 4 → 4 , 5 → 6 , 6 → 8 and
7 → 10 have been implemented. In our algorithm, swaps
are only performed if they improve the quality of the mesh.

These operations are well-known in the field of mesh
generation [26, 56], but are not necessarily efficient in the
context of this work. Notably, performing too many of them
results in slow codes, whereas the use of bad quality func-
tions results in poor quality meshes. The interest of the
method used in this paper lies how and when optimizations
are performed. The mesh optimizations are performed ele-
ment by element, and only when they are needed. Smooth-
ing is performed for every vertex, provided it increases the
quality of the corresponding ball. Swaps are only performed,
i.e., when the quality of an element decreases and passes
a certain threshold. Tetrahedra are treated in quality order
from the worst to the best one. The operation is performed
only if it verifies quality criteria on the current position of
the mesh and on the final position given by the mesh defor-
mation. A key to performing efficient swaps in the moving
mesh context is to allow a slight quality degradation in the
future. Details on this optimization step can be found in [1].

2.4 � Handling of boundaries

The mesh of the boundaries is moved rigidly, and the verti-
ces are not usually moved on the surface (no displacement
in the tangential directions). However, in some cases, such
as when a body is moving very close to the bounding box
of the domain, it can be useful to move the vertices of the
bounding box as well. In this case, we can allow tangen-
tial displacement on the boundary. The risk of deforming a
curved surface being too great, we only do this for planes
aligned with the Cartesian frame. To do so, the displace-
ments along the tangential axes are simply considered as
new degrees of freedom. For instance, for a plane (x, y), the
displacements along the x-axis and the y-axis are considered
as degrees of freedom and are added to the elasticity system.
The displacement along the z-axis is still set to 0, and thus is
not added to the system.

2.5 � Moving mesh algorithm

The overall connectivity-change moving mesh algorithm is
described in Algorithm 1, where the different phases described
above are put together. When coupled with a flow solver (see
Sect. 3), the flow solver is called after the optimization phase.
In this algorithm,  stands for meshes,  for solutions, Q for
quality (see Relation (2)), �

⏐�Ωh
 for the displacement on the

boundary, and � and � for speed and acceleration. Δt and �t are
time steps whose meaning is detailed below.

CFL
CFL

In Algorithm 1, three time steps appear: a large one
Δt for the mesh deformation computation, a smaller one
�topt corresponding to the steps where the mesh is opti-
mized, and the solver time step �tsolver . Δt , is currently
set manually at the beginning of the computation. After
each mesh deformation solution, the quality of the mesh
in the future is analyzed: if the quality is too low, the mesh
deformation is problem is solved again with a smaller Δt
(Algorithm 1 step 2(d)). Moreover, if the mesh quality
degrades, a new mesh deformation solution is computed
(Algorithm 1 step 3(g)). �topt is computed automatically,
using the CFLgeom parameter as described below. Deter-
mining �tsolver will be discussed in Sect. 3. If the solver
time step �tsolver is greater than the optimization time step,
then the solver time step is truncated to follow the opti-
mizations. If �tsolver is smaller than the optimization time
step—which is almost always the case—several iterations

	 Engineering with Computers

1 3

of the flow solver are performed between two optimiza-
tion steps.

2.6 � Moving mesh time steps

A good restriction to be imposed on the mesh movement
to limit the apparition of flat or inverted elements is that
vertices cannot cross too many elements on a single move
between two mesh optimizations. Therefore, a geometric
parameter CFLgeom is introduced to control the number of
stages used to perform the mesh displacement between t and
t + Δt . If CFLgeom is greater than one, the mesh is authorized
to cross more than one element in a single move. In practice,
CFLgeom is usually set between 1 and 8. The moving geomet-
ric time step is given by:

where h(�i) is the smallest height of all the elements in the
ball of vertex Pi . In practice, when coupled with a flow
solver, the actual time step is the minimum between the flow
solver time step and the geometric one.

3 � Arbitrary Lagrangian Eulerian flow solver

An Arbitrary Lagrangian Eulerian (ALE) flow solver has
been coupled to the moving mesh process described in Algo-
rithm 1. In this section, we discuss in detail the implemented
solver, and all the choices that were made from the numerous
possibilities available in the literature.

3.1 � Euler equations in the ALE framework

We consider the compressible Euler equations for a New-
tonian fluid in their ALE formulation. The ALE formu-
lation allows the equations to take arbitrary motion of
the mesh into account. Assuming that the gas is perfect,
inviscid and that there is no thermal diffusion, the ALE
formulation of the equations is written, for any arbitrary
closed volume C(t) of boundary �C(t) moved with mesh
velocity w:

(3)�topt = CFLgeom max
Pi

h(�i)

�(�i)
,

(4)

d

dt

(
�C(t)

�d�

)
+ �

𝜕C(t)

( (�) −� ⊗ w) ⋅ � d�

= �C(t)

�ext d�

⟺
d

dt

(
�C(t)

�d�

)
+ �

𝜕C(t)

(�(�) −�(w ⋅ �)) d�

= �C(t)

�ext d�,

where

and we have noted � the density of the fluid, p the pressure,
� = (ux, uy, uz) its Eulerian velocity, � = � ⋅ � , q = ‖�‖ , �
the internal energy per unit mass, e = 1∕2 q2 + � the total
energy per unit mass, h = e + p∕� the enthalpy per unit mass
of the flow, �ext the resultant of the volumic external forces
applied on the particle and � the outward normal to interface
�C(t) of C(t).

3.2 � Spatial discretization

As regards spatial discretization of the solver, we use an
edge-based finite-volume approach, with an HLLC Riemann
approximate solver and second-order MUSCL gradient
reconstruction. The main difference when translating these
schemes from the standard formulation to the ALE formula-
tion is the addition of the mesh velocities in the wave speeds
of the Riemann problem.

3.2.1 � Edge‑based finite volume solver

The domain Ω is discretized by a tetrahedral unstructured
mesh  . The vertex-centered finite volume formulation con-
sists in associating a control volume denoted Ci(t) with each
vertex Pi of the mesh and at each time t. The dual finite vol-
ume cell mesh is built by the rule of medians. The common
boundary �Cij(t) = �Ci(t) ∩ �Cj(t) between two neighboring
cells Ci(t) and Cj(t) is decomposed into several triangular
interface facets. The normal flux �ij(t) along each cell inter-
face is taken to be constant (not in time but in space), just
like the solution �ij on the interface.

Rewriting System (4) for C(t) = Ci(t) , we get the follow-
ing semi-discretization at Pi:

–	 �i(t) is the mean value of state � in cell Ci at time t
–	 Vi is the set of all neighboring vertices of Pi , i.e., the

mesh vertices connected connected to Pi by an edge

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� = (�, ��, �e)T is the conservative variables vector

 (�) =
�
��, �ux� + p�x, �uy� + p�y, �uz� + p�z, ��h

�
is the

flux tensor

�(�) =  (�) ⋅ �

=
�
��, �ux� + pnx, �uy� + pny, �uz� + pnz, �e� + p�

�T
�ext =

�
0, � �ext, �� ⋅ �ext

�T
is the contribution of the external

forces,

(5)

d

dt

(|Ci(t)|�i(t)
)
+

∑
Pj∈Vi

|�Cij(t)|�ij

(
�i(t), �j(t), �ij(t), �ij(t)

)
= 0,

Engineering with Computers	

1 3

–	 �ij is the outward normalized normal (with respect to cell
Ci ) of cell interface �Cij

–	 �ij(t) =  (�ij(t)) ⋅ �ij(t) is an approximation of the physi-
cal flux through �Cij(t).

–	 �ij(t) =
1

|�Cij(t)| ∫�Cij(t)

wij(t) ⋅ �ij(t)ds is the normal veloc-

ity of cell interface �Cij(t)

–	 �ij

(
�i(t),�j(t), �ij(t), �ij(t)

)
≈ �ij(t) − �ij(t)�ij(t) is the

numerical flux function used to approximate the flux at cell
interface �Cij(t).

The computation of the convective fluxes is performed mono-
dimensionally in the direction normal to each finite volume
cell interface. Consequently, the numerical evaluation of the
flux function �ij at interface �Cij can be achieved by solv-
ing, at each time step, a one-dimensional Riemann problem
in direction �ij = � with initial values �L = �i on the left of
the interface and �R = �j on the right. The normal speed to
the interface is temporarily noted � for clarity.

3.2.2 � HLLC numerical flux

The methodology provided by Batten [10] can be extended to
the Euler equations in their ALE formulation. The HLLC flux
is then described by three waves phase velocities:

and two approximate states:

where � = � ⋅ � is the interface normal velocity and .̃ are Roe
average variables [52]. The HLLC flux through the interface
is finally given by:

SL = min(𝜂L − cL, 𝜂̃ − c̃) and SR = max(𝜂R + cR, 𝜂̃ + c̃)

SM =
𝜌R𝜂R(SR − 𝜂R) − 𝜌L𝜂L(SL − 𝜂L) + pL − pR

𝜌R(SR − 𝜂R) − 𝜌L(SL − 𝜂L)

�∗
L
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
L
= �L

SL − �L

SL − SM
p∗
L
= p∗ = �L

�
�L − SL

��
�L − SM

�
+ pL

(��)∗
L
=

�
SL − �L

�
��L +

�
p∗ − pL

�
�

SL − SM

(�e)∗
L
=

�
SL − �L

�
�eL − pL�L + p∗SM

SL − SM

,

�∗
R
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
R
= �R

SR − �R

SR − SM
p∗
R
= p∗ = �R

�
�R − SR

��
�R − SM

�
+ pR

(��)∗
R
=

�
SR − �R

�
��R +

�
p∗ − pR

�
�

SR − SM

(�e)∗
R
=

�
SR − �R

�
�eR − pR�R + p∗SM

SR − SM

,

The HLLC approximate Riemann solver has the following
properties. It automatically: (1) satisfies the entropy inequal-
ity; (2) resolves isolated contacts exactly; (3) resolves iso-
lated shocks exactly and (4) preserves positivity.

3.2.3 � High‑order scheme

The previous formulation reaches at best a first-order spatial
accuracy. A MUSCL type reconstruction method has been
designed to increase the order of accuracy of the scheme. The
idea is to use extrapolated values �ij and �ji of � at interface
�Cij to evaluate the flux, where � = (�, �, p) is the vector of
physical variables. The following approximation is performed:
�ij = �(�ij,�ji, �ij, �ij) with �ij and �ji linearly interpolated
state values on each side of the interface:

In contrast to the original MUSCL approach, the approx-
imate “slopes” (∇�)ij and (∇�)ji are defined for each
edge using a combination of centered, upwind and nodal
gradients.

The centered gradient related to edge �i�j , is defined
implicitly along edge �i�j via relation:

Upwind and downwind gradients, which are also related to
edge �i�j , are computed using the upstream and downstream
tetrahedra associated with this edge. These tetrahedra are,
respectively, denoted Kij and Kji . Kij (resp. Kji ) is the unique
tetrahedron of the ball of Pi (resp. Pj ) whose opposite face
is crossed by the straight line prolongating edge �i�j ; see
Fig. 2. Upwind and downwind gradients of edge �i�j are
then defined as:

�HLLC(�L,�R, �, 𝜎) =

⎧
⎪⎨⎪⎩

�L − 𝜎�L if SL − 𝜎 > 0

�∗
L
− 𝜎�∗

L
if SL − 𝜎 ≤ 0 < SM − 𝜎

�∗
R
− 𝜎�∗

R
if SM − 𝜎 ≤ 0 ≤ SR − 𝜎

�R − 𝜎�R if SR − 𝜎 < 0

.

(6)
�ij = �i +

1

2
(∇�)ij�i�j, and �ji = �j +

1

2
(∇�)ji�i�j.

(7)(∇�)C
ij
�i�j = �j − �i.

MjMi

Pi Pj

Kij

Kji

Fig. 2   Downstream Kij and upstream Kji tetrahedra associated with
edge �i�j

	 Engineering with Computers

1 3

where

is the ℙ1-Galerkin gradient on element K and �P is the basis
function associated with P. Parametrized nodal gradients are
built by introducing the �-scheme:

where � ∈ [0, 1] is a parameter controlling the amount of
upwinding. For instance, the scheme is centered for � = 0
and fully upwind for � = 1.

The most accurate �-scheme is obtained for � = 1∕3 , also
called the V4-scheme. This scheme is third-order for the
two-dimensional linear advection problem on structured tri-
angular meshes. In our case, for the non-linear Euler equa-
tions on unstructured meshes, a second-order scheme with
a fourth-order numerical dissipation is obtained [18]. The
high-order gradients are given by:

3.2.4 � Limiter

The previous MUSCL schemes are neither monotone nor
positive. Therefore, limiting functions must be coupled to
the previous high-order gradient evaluations to preserve the
monotonicity and positivity of the scheme. To this end, the
gradient of Relation (6) is replaced by a limited gradient
denoted (∇�lim)ij . Here, the three-entry limiter introduced
by Dervieux [17], which is a generalization of the SuperBee
limiter, will be used :

with

The operator L defined above is applied component by
component.

3.2.5 � Boundary conditions

Boundary conditions are computed vertexwise. Several
conditions are used, but only one, the slipping condition, is
applied to moving bodies. In the context of ALE simulation,

(∇�)U
ij
= (∇�)|Kij and (∇�)D

ij
= (∇�)|Kji ,

∇�|K =
∑
P∈K

(
∇𝜙P ⊗ �P

)

∇�ij �i�j = (1 − �)(∇�)C
ij
�i�j + � (∇�)U

ij
�i�j,

∇�ji �i�j = (1 − �)(∇�)C
ij
�i�j + � (∇�)D

ij
�i�j,

(∇�)V4
ij

�i�j =
2

3
(∇�)C

ij
�i�j +

1

3
(∇�)U

ij
�i�j,

(∇�)V4
ji

�i�j =
2

3
(∇�)C

ij
�i�j +

1

3
(∇�)D

ij
�i�j.

(8)

(
∇�lim

)
ij
�i�j = L

((
∇�D

)
ij
�i�j,

(
∇�C

)
ij
�i�j,

(
∇�V4

)
ij
�i�j

)

L(a, b, c) =

{
0 if ab ≤ 0

sign(a)min(2 |a|, 2 |b|, |c|) otherwise .

this condition has to take into account the displacement of
the body. Consequently, we impose weakly1

where �i is the DGCL compatible unitary boundary face
normal and �i is the boundary face velocity.

The standard ALE slipping boundary flux of vertex Pi
reduces to:

where �𝜕Ci�Γ =
∑

Kj⊃Pi

1

3
�Kj� is the interface area, see

Sect. 3.3.6, pi is the vertex pressure, �i =
∑

Kj⊃Pi
�Kj��Kj∑

Kj⊃Pi
�Kj� is the

mean outward normal of the boundary interface and . How-
ever, when high-order numerical schemes are considered,
such a boundary condition creates oscillations in the density
and the pressure when shock waves impact normally the
boundary. We thus prefer considering a mirror state and
apply an approximate Riemann state to diminish these
oscillations.

We thus have to evaluate the flux between the state on the
boundary � and the ALE mirror state �:

as the mirror state verifies

To evaluate the boundary flux, we consider the HLLC
numerical flux between the state and the mirror state:

Note that by definition we have

Thus, if Condition (9) is satisfied, then �i = �i and
the flux �slip

(
�i, �i, �i

)
 simplifies to the form in Rela-

tion (10). In general, this condition is not satisfied, so we
use Relation (11).

(9)�i ⋅ �i = �i,

(10)�slip

�
�i, �i, �i

�
=

⎛
⎜⎜⎝

0

−pi
�i

‖�i‖
−pi�i

⎞
⎟⎟⎠
��Ci�Γ,

�i =

⎛⎜⎜⎝

�i
�i�i
�iEi

⎞⎟⎟⎠
and �i =

⎛⎜⎜⎝

�i
��i − 2 �i (�i ⋅ �i − �i)�i
�Ei − 2 �i �i (�i ⋅ �i − �i)

⎞⎟⎟⎠

pi =pi, �i = �i, ci = ci, �i ⋅ �i = 2 �i − �i ⋅ �i and

Hi =Hi − 2 �i (�i ⋅ �i − �i).

(11)�slip

(
�i, �i, �i

)
= �HLLC

(
�i,�i, �i, �i

)
.

�HLLC(�i,�i, �i, �i) = �(�i) − �i�i.

1  We do not enforce the numerical solution to verify �
i
.�

i
= �

i

Engineering with Computers	

1 3

3.3 � Time discretization

Temporal discretization is a more complex matter. In this
work, we chose an explicit time discretization, which is
simpler than implicit discretizations. Our time discretiza-
tion is compliant with the discrete geometric conservation
law, which can be used to rigorously determine when the
geometric parameters that appear in the fluxes should be
computed.

3.3.1 � The geometric conservation law

We need to make sure that the movement of the mesh is
not responsible for any artificial alteration of the physical
phenomena involved, or at least, to make our best from a
numerical point of view for the mesh movement to intro-
duce an error of the same order as the one introduced by the
numerical scheme. If System (4) is written for a constant
state, assuming �ext = 0 , we get, for any arbitrary closed
volume C = C(t):

As the constant state is a solution of the Euler equations, if
boundaries transmit the flux towards the outside as it comes,
we find a purely geometrical relation inherent to the continu-
ous problem. For any arbitrary closed volume C = C(t) of
boundary �C(t) , Relation (12) is integrated into:

which is usually known as the geometric conservation law
(GCL). From a geometric point of view, this relation states
that the algebraic variation of the volume of C between two
instants equals the algebraic volume swept by its boundary.

The role of the GCL in ALE simulations has been ana-
lyzed in [22]. It has been shown that the GCL is neither a
necessary nor a sufficient condition to preserve time accu-
racy; however, violating it can lead to numerical oscilla-
tion [46]. In [24] the authors show that compliance with the
GCL guarantees an accuracy of at least the first order in some
conditions. Therefore, most would agree that the GCL should
be enforced at the discrete level for a large majority of cases.

3.3.2 � Discrete GCL enforcement

A new approach to enforcing the discrete GCL was pro-
posed in [46, 57, 58], in which the authors proposed a frame-
work to build ALE high-order temporal schemes that reach

(12)
d(|C(t)|)

dt
− ∫

�C(t)

(w ⋅ �) ds = 0.

(13)
|C(t + �t)| − |C(t)| = ∫

t+�t

t ∫
�C(t)

(w ⋅ �) dsdt,

with t and t + �t ∈ [0, T],

approximately the design order of accuracy. The originality
of this approach consists in precisely defining which ALE
parameters are true degrees of freedom and which are not. In
contrast to other approaches [35, 38, 48], they consider that
the times and configurations at which the fluxes are evaluated
do not constitute a new degree of freedom to be set thanks
to the ALE scheme. To maintain the design accuracy of the
fixed-mesh temporal integration, the moment at which the geo-
metric parameters, such as the cells’ interfaces’ normals or the
upwind/downwind tetrahedra must be computed, is entirely
determined by the intermediate configurations involved in the
chosen temporal scheme. The only degree of freedom to be set
by enforcing the GCL at the discrete level is � . Incidentally,
it is implicitly stated that w is never involved alone but only
hidden in the term �‖�‖ which represents the instantaneous
algebraic volume swept.

In practical terms, the interfaces normal speeds are found
by simply rewriting the scheme for a constant discrete solution,
which leads to a small linear system that is easily invertible
by hand. This procedure is detailed in the next section for one
Runge–Kutta scheme. Any fixed-mesh explicit RK scheme
can be extended to the case of moving meshes thanks to this
methodology, and the resulting RK scheme is naturally DGCL.
Even if this has not been proven theoretically, the expected
temporal order of convergence has also been observed numeri-
cally for several schemes designed using this method [57].

3.3.3 � RK schemes

Runge–Kutta (RK) methods are famous multi-stage methods
to integrate ODEs. In the numerical solution of hyperbolic
PDEs, notably the Euler equations, the favorite schemes
among the huge family of Runge–Kutta schemes are those
satisfying the strong stability preserving (SSP) property [53,
55]. In what follows, we denote by SSPRK(S,P) the S-stage
RK scheme of order P. We adopt the following notations:

with

Superscript notation Xs indicates that the quantity consid-
ered is the X obtained at stage s of the Runge–Kutta process.

(14)� s
i
=

ni∑
j=1

�(�s
i
,�s

j
, �s

ij
, �s

ij
),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ni the number of edges in the ball of vertex Pi

�s
ij

the outward ��� − ���������� normal to the

portion of the interface of cell Cs
i
around

edge eij
�s
ij
normal speed of the interface around edge eij of

cellCs
i
.

	 Engineering with Computers

1 3

For instance, Cs
i
 is the cell associated with vertex Pi when

the mesh has been moved to its sth Runge–Kutta configura-
tion. Coefficients

(
cs
)
0≤s≤S indicate the relative position in

time of the current Runge–Kutta configuration:
ts = tn + cs � with � = tn+1 − tn . Finally, we denote by As

ij

the volume swept by the interface around edge eij of cell Ci
between the initial Runge–Kutta configuration and the sth
configuration.

3.3.4 � Application to the SSPRK(4,3) scheme

This approach was used, for example, to build the third-
order 4-step Runge–Kutta scheme [51], whose Butcher and
Shu–Osher representations are given in Table 1.

For this scheme to be DGCL, it must preserve a constant
solution �i = �0 , as stated in Sect. 3.3.1. In this specific case,
our conservative variable is �i = |Ci|�0 and the purely physi-
cal fluxes vanish, leading to � s

i
= −�0

∑ni
j=1

�s
ij
�s
ij
 . Therefore,

the scheme reads:

where As
ij
 is the volume swept by the interface around edge

eij of cell Ci between the initial and the sth Runge–Kutta con-
figuration. A natural necessary condition for the above rela-
tions to be satisfied is to have, for each interface around edge
eij of each finite volume cell Ci:

|C0
i
| =|Cn

i
|

|C1
i
| − |C0

i
| =

ni∑
j=1

A1
ij
=

�

2

ni∑
j=1

�0
ij
�0
ij

|C2
i
| − |C0

i
| =

ni∑
j=1

A2
ij
=

�

2

ni∑
j=1

(
�0
ij
�0
ij
+ �1

ij
�1
ij

)

|C3
i
| − |C0

i
| =

ni∑
j=1

A3
ij
=

�

6

ni∑
j=1

(
�0
ij
�0
ij
+ �1

ij
�1
ij
+ �2

ij
�2
ij

)

|C4
i
| − |C0

i
| =

ni∑
j=1

A4
ij
=

�

2

ni∑
j=1

(
1

3
�0
ij
�0
ij
+

1

3
�1
ij
�1
ij
+

1

3
�2
ij
�2
ij

+ �3
ij
�3
ij

)
,

Therefore, the normal speed of the interface around edge
eij of cell Ci must be updated in the Runge–Kutta process
as follows :

and the �s
ij
 and As

ij
 are computed on the mesh once it has been

moved to the sth Runge–Kutta configuration.

3.3.5 � Practical computation of the volumes swept

The interface of a finite volume cell is made up of several
triangles, connecting the middle of an edge to the center of
gravity of a face and the center of gravity of that tetrahedron;
see Fig. 3. The two triangles of the interface sharing one edge
within a tetrahedron are coplanar (i.e., the middle of an edge,
the center of gravity of the two faces neighboring this edge and
the center of gravity of tetrahedron are coplanar). The union
of these two triangles is called the facet associated to the edge
and the tetrahedron.

At configuration ts = t0 + cs � , (with t0 = tn ), the outward
non-normalized normal �s

ij
 and the volume swept As

ij
 are com-

(15)

⎛
⎜⎜⎜⎜⎝

A1
ij

A2
ij

A3
ij

A4
ij

⎞
⎟⎟⎟⎟⎠
= �

⎛
⎜⎜⎜⎜⎝

1

2
0 0 0

1

2

1

2
0 0

1

6

1

6

1

6
0

1

6

1

6

1

6

1

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�0
ij
�0
ij

�1
ij
�1
ij

�2
ij
�2
ij

�3
ij
�3
ij

⎞
⎟⎟⎟⎟⎠

⇔

⎛⎜⎜⎜⎜⎝

�0
ij
�0
ij

�1
ij
�1
ij

�2
ij
�2
ij

�3
ij
�3
ij

⎞⎟⎟⎟⎟⎠
=

1

�

⎛⎜⎜⎜⎝

2 0 0 0

−2 2 0 0

0 − 2 6 0

0 0 − 2 2

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

A1
ij

A2
ij

A3
ij

A4
ij

⎞⎟⎟⎟⎟⎠
.

(16)

�0
ij
=

2A1
ij

� �0
ij

, �1
ij
=

−2A1
ij
+ 2A2

ij

� �1
ij

, �2
ij
=

−2A2
ij
+ 6A3

ij

� �2
ij

, and

�3
ij
=

−2A3
ij
+ 2A4

ij

� �3
ij

,

Table 1   Butcher and Shu–
Osher representations of the
third-order 4-step Runge–Kutta
scheme (SSPRK(4,3))

Butcher representation Shu–Osher representation ts = tn + cs �

�i
0 = �i

n �i
0 = �i

n c
0
= 0, t0 = tn

�i
1 = �i

0 +
�

2
�0
i

�i
1 = �i

0 +
�

2
�0
i c

1
=

1

2
, t1 = tn +

1

2
�

�i
2 = �i

0 +
�

2

(
�0
i
+ �1

i

)
�i

2 = �i
1 +

�

2
�1
i

c
2
= 1, t2 = tn+1

�i
3 = �i

0 +
�

6

(
�0
i
+ �1

i
+ �2

i

)
�i

3 =
2

3
�i

0 +
1

3
�i

2 +
�

6
�2
i

c
3
=

1

2
, t3 = tn +

1

2
�

�i
4 = �i

0 +
�

2

(
1

3
�0
i
+

1

3
�1
i
+

1

3
�2
i
+ �3

i

)
�i

4 = �i
3 +

�

2
�3
i

c
4
= 1, t4 = tn+1

Engineering with Computers	

1 3

puted as described in [49]. As the cell interface is made up of
several facets, the total swept volume is the sum of the volumes
swept by each facet.

Let us assume that the facet considered is associated with
edge �ij = PiPj and belongs to tetrahedron K = (P0,P1,P2,P3) .
In what follows, i ≠ j ≠ l ≠ m ∈ [[0, 3]] , G denotes the center
of gravity of tetrahedron K, Mm denotes the gravity center of
face Fm = (Pi,Pj,Pl) of tetrahedron K and Ml the center of
gravity of face Fl = (Pi,Pj,Pm) . The outward non-normalized
normal of the facet is given by:

where

(17)
�̃s
ij,K

=
1

4
����

�
∧ ����

�
+

1

4
����

�
∧ ����

�

+
1

2
����

�
∧ ����

�
+

1

2
����

�
∧ ����

�
,

����
�
=

1

12

(
P0
i
+ P0

j
− 3P0

m
+ P0

l

)
,

����
�
=

1

12

(
Ps
i
+ Ps

j
− 3Ps

m
+ Ps

l

)
,

����
�
=

1

12

(
P0
i
+ P0

j
+ P0

m
− 3P0

l

)
and

����
�
=

1

12

(
Ps
i
+ Ps

j
+ Ps

m
− 3Ps

l

)
.

The volume swept by the facet is:

with the mean velocity written as:

with

Finally, the total volume swept by the interface around edge
eij of cell Ci is obtained by summing over the shell of the
edge, i.e., all the tetrahedra sharing the edge:

It is important to understand that normals �̃s
ij,K

 are pseudo-

normals which are used only to compute the volumes swept
by the facets. They must not be mistaken for normals to
facets taken at ts , �s

ij,K
 , which are used for the computation

of ALE fluxes.

3.3.6 � Volumes swept by boundary interfaces

The pseudo-normals and swept volumes of boundary faces
are computed in a similar way. Let K = (P0 ,P1 ,P2) be
a boundary triangle, as in Fig. 3. Let M0 , M1 and M2 be
the middles of the edges and G the center of gravity of K.
The triangle is made up of three quadrangular finite vol-
ume interfaces: (P0 ,M2 ,G ,M1) associated with cell C0 ,
(P1 ,M0 ,G ,M2) with C1 and (P2 ,M1 ,G ,M0) with C2 . Each
boundary interface Ii is made of two sub-triangles, noted Tij
and Tik with j, k ≠ i.

The volume swept by interface Ii between the initial and
current Runge–Kutta configurations is the sum of the vol-
umes swept by its two sub-triangles:

where ws
Gij

 is the velocity of the center of gravity Gij of tri-

angle Tij and �̃s
ij
 is the pseudo-normal associated with Tij ,

computed between the initial and current Runge–Kutta
configurations.

The six triangles Tij are coplanar, so their pseudo-normals
have the same direction. Moreover, as median cells are used,
their pseudo-normals also have the same norm, which is
equal to one sixth of the norm of the pseudo-normal to tri-
angle K. This common pseudo-normal is therefore equal to:

(18)As
ij,K

= cs 𝜏 (wG)
s
ij,K

⋅ �̃s
ij,K

,

(wG)
s
ij,K

=
1

36 cs �

(
13ws

i
+ 13ws

j
+ 5ws

m
+ 5ws

l

)

w
s
�
= Ps

�
− P0

�
.

(19)As
ij
=

∑
K∈Shell(i,j)

As
ij,K

.

(20)As
i,K

= As
Tij
+ As

Tik
= cs𝜏 w

s
Gij

⋅ �̃s
ij
+ cs𝜏 w

s
Gik

⋅ �̃s
ik
,

P0

P2

P1

I01

I02

I03

M1
M2

M3

G

P0

P1

P2

G

M1

M2

M0

G02

G01
G10

G12

G20
G21

boundary triangle K

T02

T01
T10

T12

T21T20

I2

I0

I1

Fig. 3   Interface of a finite volume cell made up of facets (top) and
boundary interface (bottom)

	 Engineering with Computers

1 3

thus

where

Finally, the total volume swept by the boundary interface is:

3.3.7 � MUSCL approach and RK schemes

Regarding spatial accuracy, we have seen that the order of
accuracy can be enhanced using the MUSCL-type recon-
struction with upwinding. However, in the ALE context, one
must determine how and when upwind/downwind elements
should be evaluated to compute upwind/downwind gradi-
ents which are necessary for the �-schemes. This question
is neither answered in the literature and generally approxi-
mations are carried out. For instance, some papers propose
to use upwind and downwind elements at tn for the whole
Runge–Kutta process. However, this choice should be con-
sistent with the considered time integration scheme. Fol-
lowing the framework of [57], it is clear that preserving the
expected order of accuracy in time imposes that the upwind/
downwind elements and the gradients are computed on the
current Runge–Kutta configuration, i.e., on the mesh at ts .
Therefore, similarly to geometric parameters, the upwind/
downwind elements and the gradients should be re-evaluated
at each step of the Runge–Kutta stage.

3.3.8 � Computation of the time step

The maximal allowable time step for the numerical scheme
is:

(21)

�̃s =
1

6
�̃s
K
=

1

6
⋅
1

3

[
1

4
��
�
��
�
∧ ��

�
��
�

+
1

4
��
�
��
�
∧ ��

�
��
�

+
1

2
��
�
��
�
∧ ��

�
��
�

+
1

2
��
�
��
�
∧ ��

�
��
�

]
,

(22)As
i,K

= cs𝜏
[
w
s
Gij

+ w
s
Gik

]
⋅ �̃s,

w
s
Gij

=
1

18 cs �

(
11ws

i
+ 5ws

j
+ 2ws

k

)
with w

s
�
= Ps

�
− P0

�
.

(23)As
i
=

∑
K∈Ball(i)

As
i,K
.

(24)�(Pi) =
h(Pi)

ci + ‖�i − wi‖ ,

where h(Pi) is the smallest height in the ball of vertex Pi ,
ci is the speed of sound, �i is the Eulerian speed (the speed
of the fluid, computed by the solver) and wi is the speed
of the mesh vertex. The global time step is then given by
� = CFL minPi

(�(Pi)).

3.3.9 � Handling the swaps

An ALE formulation of the swap operator, satisfying the
DGCL, was proposed in 2D in [51], but its extension to 3D
is very delicate because it requires to handle 4D geometry,
and it has not been carried out yet. Instead of considering
an ALE scheme for the swap operator, our choice in this
work is to perform the swaps between two solver itera-
tions, i.e., at a fixed time tn . This consequently means that
during the swap phase, the mesh vertices do not move, and
thus the swaps do not impact the ALE parameters � and
w , unlike [51] where the swaps are performed during the
solver iteration, i.e., between tn and tn+1 . After each swap,
the solution should be updated on the new configuration.
Two interpolation methods are considered here.

The first, and simplest, one is to perform a linear inter-
polation to recover the solution. As only the connectivity
changes and not the vertices positions, the solution at the
vertices does not change, i.e., nothing has to be done. This
interpolation is DGCL compliant, since the constant state is
preserved (in fact, any linear state is preserved), but it does
not conserve the mass (i.e., it does not conserve the inte-
gral of the conservative variable) which is problematic for
conservative equations when discontinuities are involved
in the flow.

The second method is the P1-exact conservative inter-
polation following [2, 5]. It is a simplified version of the
latter because the cavity of the swap configuration is fixed.
The mass conservation property of the interpolation opera-
tor is achieved by element–element intersections. The idea
is to find, for each element of the new configuration, its
geometric intersection with all the elements of the previ-
ous configuration it overlaps and to mesh this geomet-
ric intersection with simplices. We are then able to use
a Gauss quadrature formula to exactly compute the mass
which has been locally transferred. High-order accuracy is
obtained through the reconstruction of the gradient of the
solution from the discrete data and the use of some Taylor
formulae. Unfortunately, this high-order interpolation can
lead to a loss of monotonicity. The maximum principle is
recovered by correcting the interpolated solution in a con-
servative manner, using a limiter strategy very similar to
the one used for finite volume solvers. Finally, the solution
values at vertices are reconstructed from this piecewise
linear by element discontinuous representation of the solu-
tion. The algorithm is summarized in Algorithm 2, where

Engineering with Computers	

1 3

mK stands for the integral of any conservative quantities
(density, momentum and energy) on the considered ele-
ment. This method is also compliant with the DGCL.

Moreover, after each swap, the data of the finite volume
cells (volume and interface normals) are updated, together
with the topology of the mesh (edges and tetrahedra).
This requires to have a flow solver with dynamic data. In
Sects. 6.1 and 6.2, we will quantify the error due to the use
of swaps in numerical simulations.

4 � FSI coupling

The moving boundaries can have an imposed motion, or be
driven by fluid–structure interaction. A simple solid mechan-
ics solver is coupled to the flow solver described previously.
The chosen approach is the 6-DOF (6 Degrees of Freedom)
approach for rigid bodies.

4.1 � Movement of the geometries

In this work, the bodies are assumed to be rigid, of con-
stant mass and homogeneous, i.e., their mass is uniformly
distributed in their volume. The bodies we consider will
never break into different parts. Each rigid body B is fully
described by:

Physical quantities Its boundary �B and its associated
inward normal � , its mass m assumed to be constant, its
d × d matrix of inertia G computed at G which is sym-
metric and depends only on the shape and physical nature
of the solid object.2
Kinematic quantities The position of its center of grav-
ity �� = (x(t), y(t), z(t)) , its angular displacement vector
� = �(t) and its angular speed vector d�∕dt.

�ext denotes the resultant vector of the external forces
applied on B, �G

(
�ext

)
 the kinetic moment of the external

forces applied on B computed at G and � the gravity vector.
We assume that the bodies are only submitted to forces of
gravity and fluid pressure. The equations for solid dynamics
in an inertial frame then read:

4.2 � Discretization

The equation governing the position of the center of gravity
of the body is easy to solve since it is linear. Its discretization
is straightforward. However, the discretization of the second
equation, which controls the orientation of the body, is more
delicate. Since the matrix of inertia G depends on � , it is a
non-linear second-order ODE. The chosen discretization is
extensively detailed in [50] and is based on rewriting of the
equations in the frame of the moving body.

4.3 � Explicit coupling

As the geometry must be moved in accordance with the fluid
computation, the same time integration scheme has been
taken to integrate the fluid and the solid equations. There-
fore, time-advancing of the rigid bodies ODE System is per-
formed using the same RKSSP scheme as the one used to
advance the fluid numerical solution. The coupling is loose
and explicit as the external forces and moments acting on
rigid objects are computed on the current configuration.

5 � Implementation and parallelization

Most parts of the code are parallelized with p-threads using
an automatic p-thread parallelization library [45] coupled
with a space filling curve renumbering strategy [4]. The
Hilbert space filling curve based renumbering strategy
is used to map mesh geometric entities, such as vertices,
edges, triangles and tetrahedra, into a one-dimensional
interval. In numerical applications, it can be viewed as a
mapping from the computational domain onto the memory
of a computer. The local property of the Hilbert space fill-
ing curve implies that entities which are neighbors on the
memory 1D interval are also neighbors in the computa-
tional domain. Therefore, such a renumbering strategy has
a significant impact on the efficiency of a code. We can
state the following benefits: it reduces the number of cache
misses during indirect addressing loops, and it reduces

(25)

⎧
⎪⎨⎪⎩

m
d2��

dt2
= �ext = �

�B

p(s)�(s)ds + m�

G

d2�

dt2
= �G

�
�ext

�
= �

�B

��
s − ��

�
× p(s)�(s)

�
ds.

2  The moment of inertia relative to an axis of direction � pass-
ing through G where � is an arbitrary unit vector is given by:
J(G�) = �T

G
�.

	 Engineering with Computers

1 3

cache-line overwrites during indirect addressing loops,
which is fundamental for shared memory parallelism.

The automatic parallelization library cuts the data
into small chunks that are compact in terms of memory
(because of the renumbering), then uses a dynamic sched-
uler to allocate the chunks to the threads to limit concur-
rent memory accesses. In the case of a loop performing
the same operation on each entry of a table, the loop is
split into many sub-loops. Each sub-loop will perform
the same operation (symmetric parallelism) on equally-
sized portions of the main table and will be concurrently
executed. It is the scheduler’s job to make sure that two
threads do not write on the same memory location simul-
taneously. When indirect memory accesses occur in loops,
memory write conflicts can still arise. To deal with this
issue, an asynchronous parallelization is considered
rather than of a classic gather/scatter technique, i.e., each
thread writes in its own working array and then the data
are merged.

Our moving mesh strategy performs frequent mesh opti-
mizations that impact the ALE speeds of the vertices, so it
is much more efficient to have the whole moving mesh part
included in the solver code. To handle the moving mesh,
semi-dynamic data structures are necessary. Since we do
not do vertex insertion or deletion, only some of the data
structures have to be dynamic (edge and tetrahedra lists),
whereas some remain static (the list of vertices, as well as
all the data associated to vertices). In the case of dynamic
data, the appropriate organization of the memory which
reduces concurrent accesses can be lost, and thus imposes
re-sorting the data according to the Hilbert numbering
from time to time in order to maintain a good speedup.

Some parts of the code have not yet been parallelized, in
particular the elasticity solution and the mesh optimization
step. The optimizations are difficult to parallelize because
they are greatly dependent on the order in which they are
performed. Although changing this order leads to the same
overall result, it is not exactly the same, and thus, the dynamic
handling of the library makes each run non reproducible. To
have a parallel and reproducible mesh optimization step, the
operators should be rewritten with different algorithms to
make them independent of the process order. Such algorithms
are generally less efficient in terms of CPU time.

6 � Verification of the solver

In the following section, we present academic test cases
in order to assess the behavior of the different parts of the
solver: the fluid ALE solver, the rigid body dynamic solver
and the FSI coupling.

6.1 � Static vortex in a rotating mesh

The first test case is used to validate the ALE solver, and
study the impact of the moving mesh on the accuracy of
the solution. We study the conservation of a static vortex
(similar to [34]) on a rotating mesh.

This case is an extension of a 2D case: we consider
an extruded cylinder, and the initial solution is constant
along the z axis. The domain is a cylinder of radius 5 and
of height 1. The initial solution is defined as follows. Let
r0 = 1 be a characteristic radius and the reference state be:

Let us define the following quantities:

For a point of cylindrical coordinates (r, �, z) , the enthalpy
and speed of the vortex are:

And finally the initial solution is:

This initial configuration results in a cylindrical vortex
rotating around the z axis, that remains in a constant state
over time (density, pressure and speed are preserved). To
avoid errors due to boundary conditions, the exact solution
is enforced for every vertex farther than 90% of the cylinder
radius (typically just a few layers of elements). The mesh
is rotated rigidly around the z axis. Several rotation speeds
were considered, all of which led to the same conclusions.
Here, we only present the results for an angular speed of
0.34° per time unit, which corresponds approximately to the
speed of the vortex at a radius r = 5 . We address both space
and time convergence.

6.1.1 � Space convergence

For the space convergence study, we consider a set of uni-
form meshes of sizes varying from 10,000 vertices to 1.8
million vertices; see Table 2. The simulation is run until

(26)
�∞ = 1, ux∞ = 0, uy∞ = 0, uz∞ = 0, p∞ = 1 and � = 1.4.

D∞ =
1

2

1

(2�)2

�∞

p∞
,=

1

8�2
B∞ = 2r2

0
−

� − 1

�
D∞,

E∞ = (2r2
0
)2 − B2

∞
.

Hvor =
�

� − 1

p∞

�∞
+

1

2
(u2

x∞
+ u2

y∞
+ u2

z∞
), vvor =

1

2�

r

r2 + 1
.

(27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ux0 = ux∞ − vvor sin � = −vvor sin �

uy0 = uy∞ + vvor cos � = vvor cos �

uz0 = 0

p0 = p∞ exp
�

2D∞√
E∞

atan
�

2r2+B∞√
E∞

�
−

�

2

�

�0 =
�

�−1
p0

Hvor−
1

2
vvor

.

Engineering with Computers	

1 3

time t = 540 , which corresponds to half a revolution of
the cylinder. Since an exact solution is known, it is easy
to compute an error with respect to this exact solution
on each mesh. Two cases are compared: in one case the
mesh is fixed, and in the other case the mesh is rotated
as described previously. Since no mesh optimizations are
performed, it allows us to make sure that the extra ALE
terms are well computed. The results are shown in Fig. 4.
On the left graph, we plot the error varying with time for
the different meshes, fixed (red) and rotating (blue). We
can see that, as expected, the error diminishes as the size
of the mesh grows, but more significantly the curves of the
error for the moving and static meshes are almost super-
imposed. This confirms the accuracy of the ALE scheme.
To study the spatial order of convergence, the error is plot-
ted with respect to the mesh size at different times on the
right-hand graph. We can see that the order of convergence
reached is slightly greater than 2, which is coherent with
the space scheme used.

6.1.2 � Time convergence

This study was carried out in 2D for reasons of efficiency. Our
goal was to study the impact of the Runge–Kutta schemes
used and the CFL parameter. We consider a disc of radius 5,
with the same initial solution as previously (Eq. 27) and rotat-
ing with the same speed. Three time discretizations are used:
a standard first-order explicit scheme (SSPRK(1,1)), a five-
step second-order Runge–Kutta scheme (SSPRK(5,2)) and
a four-step third-order Runge–Kutta scheme (SSPRK(4,3))
described in Sect. 3.3.4. Four CFL numbers are set for
each case: CFLmax , 3∕4 × CFLmax , 1∕2 × CFLmax and
1∕10 × CFLmax . CFLmax is, respectively, 1, 4 and 2 for the
schemes SSPRK(1,1), SSPRK(5,2) and SSPRK(4,3).

The results are gathered in Fig. 5. On the first graph, the
error over time is plotted for the different temporal schemes
and CFL numbers, while on the second, we plot the error
varying with the CFL number at different time steps. On
both graphs, we can see that the error decreases with the
order of the Runge–Kutta scheme and with the CFL number.
Whereas the standard explicit scheme is very sensitive to the
time step, the error does not vary much for the SSPRK(4,3)
and SSPRK(5,2). What is interesting to notice is that we
have to use a CFL number of 0.1 CFLmax for a standard
explicit scheme to reach the same level of accuracy as the
SSPRK(4,3) scheme with a CFL number at its maximum

or the the SSPRK(5,2) scheme with a CFL number of 0.75
times its maximum. To reach a non-dimensional time equal
to 3 with the standard explicit scheme with a CFL of 0.1,
30 time steps are required, whereas only 5 are required for
the SSPRK(5,2) scheme with a CFL of 3, and 6 for the
SSPRK(4,3) with a CFL of 2. Thus we can go 6 times faster
with the high-order Runge–Kutta schemes and still obtain
the same solution accuracy, which is obviously interesting.

Influence of swaps
It is important to study the impact of edge/face swaps on

the solution accuracy in 3D. However, it is difficult to set
up a meaningful test case with swaps. The number of swaps
should be constant (in proportion to the size of the mesh),

Table 2   Test case of the static
vortex without swaps. Sizes of
the meshes used and number of
solver time steps performed

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7 Mesh 8 Mesh 9

vertices ( ×103) 12 44 138 185 256 371 585 965 1825
tetrahedra ( ×103) 48 211 691 942 1330 1965 3122 5287 10,218
time steps 4673 7280 15,608 14,321 14,321 17,275 29,996 32,245 44,680

0 100 200 300 400 500 600 700

10−6

10−5

10−4

time (s)

L
2
er
ro
r

mesh 11k vert. − ALE
mesh 11k vert. − static
mesh 45k vert. − ALE
mesh 45k vert. − static
mesh 140k vert. − ALE
mesh 140k vert. − static
mesh 190k vert. − ALE
mesh 190k vert. − static
mesh 255k vert. − ALE
mesh 255k vert. − static
mesh 370k vert. − ALE
mesh 370k vert. − static
mesh 585k vert. − ALE
mesh 585k vert. − static
mesh 965k vert. − ALE
mesh 965k vert. − static
mesh 1.8M vert. − ALE
mesh 1.8M vert. − static

10 1 10 2 10 3 10
10−7

10−6

10−5

10−4

−310

mesh size (k-vertices)

L
2
er
ro
r

time 1s − ALE
time 1s − static
time 8s − ALE
time 8s − static
time 50s − ALE
time 50s − static
time 100s − ALE
time 100s − static
time 200s − ALE
time 200s − static
time 540s − ALE
time 540s − static
Error order 1
Error order 2

Fig. 4   Test case of the static vortex (3D). Error curves comparing the
simulation on a fixed mesh (red) and on a moving mesh (blue) for
several mesh sizes. Top, the evolution of the error over time, bottom
convergence curves with respect to the size of the mesh. (Color figure
online)

	 Engineering with Computers

1 3

and they should also be uniformly distributed in both time
and space.

On all the simulations run with the connectivity-change
moving mesh strategy, we noticed that, on average, less than
one swap per 10,000 tetrahedra and per time step is per-
formed. To fit this observation, in this example, we swap all
the bad elements to preserve the mesh quality every 15 solver
time steps. Then, if not enough swaps were performed, we
randomly swap elements to reach a number of 1 swap per
666 tetrahedra. Not all random swaps are actually performed,

because some of them affect the quality of the mesh too drasti-
cally, so the number of swaps is not perfectly controlled but
this method allows us to have an average number of swaps
close to one per 10,000 tetrahedra and per time step for all the
meshes, evenly distributed in the domain, as stated in Table 3.

We again consider 3D meshes, rotating with the same speed
of 0.34° per time unit, and the simulations are run up to 270s.
In the absence of discontinuity in the solution, a linear interpo-
lation is performed after the swaps. The results are gathered in
Fig. 6. The error is slightly higher with swaps (in green) than
without (in blue and red), however the error curves remain
very close to those without swaps. The discrepancy can mainly
be explained by the non conservative characteristic of the lin-
ear interpolation. Even without a conservative formulation,
the error introduced in this example is not so large, and the
same second-order convergence rate is observed. In the next
example, we analyze the impact of a conservative formulation
in the case of discontinuities in the solution.

To sum up, this static vortex test case allowed us to vali-
date our ALE solver. We asymptotically reach an order of
convergence of 2 for the spatial error, and we made sure
there was no additional error introduced by the ALE terms.
As regards temporal convergence, the importance of a high-
order Runge–Kutta scheme was established. Finally, we
showed that edge/face swapping—artificially created in this
case, but mandatory to preserve the quality of the mesh (and
thus the accuracy of the solution) when complex geometric
displacements are involved—only creates a small error, even
if used without a specific conservative treatment.

6.2 � Sod’s shock tube with a rotating circle

To show the impact of the choice of the interpolation when
swaps are performed in the presence of discontinuities, we
consider the well-known Sod’s shock tube problem [54]. The
tube domain size is [0, 1] × [0, 0.2] , and initially, the tube is
filled with two fluids at rest (left part is x ≤ 0.5 and right part
is x > 0.5 ) verifying:

�left = 1, �left = 0, pleft = 1

and

�right = 0.125, �right = 0, pright = 0.1.

stime
0 100 200 300 400 500 600

10−6

10−5

10−4

10−3

10−2

10−1

100

101

()

L
2
er
ro
r

RK 1−1, CFL=1.00
RK 1−1, CFL=0.75
RK 1−1, CFL=0.10
RK 3−4, CFL=2.00
RK 3−4, CFL=0.20
RK 2−5, CFL=4.00
RK 2−5, CFL=3.00
RK 2−5, CFL=0.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−6

10−5

10−4

10−3

10−2

10−1

100

101

CFL/CFLmax

L
2
er
ro
r

time 1s − RK 1−1
time 1s − RK 2−5
time 1s − RK 3−4
time 540s − RK 1−1
time 540s − RK 2−5
time 540s − RK 3−4

Fig. 5   Test case of the static vortex (2D). Error curves comparing
several temporal schemes: standard explicit Euler scheme (blue),
SSPRK(4,3) (green), SSPRK(5,2) (red). Top, evolution of the error
over time. Bottom, error at a fixed time varying with the CFL num-
ber. (Color figure online)

Table 3   Test case of the static vortex with swaps. Number of swaps for each mesh. On the last line, the number of swaps is close to one swap per
time step and per 10,000 tetrahedra for all the meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7 Mesh 8 Mesh 9

tetrahedra ( ×103) 48 211 691 942 1330 1965 3122 5287 10,218
time steps 2338 3647 7788 7493 7367 8948 12,040 16,085 21,449
swaps ( ×103) 21 114 763 996 1337 2319 5204 10,838 26,719
swaps/time step/tet ( ×10−4) 1.80 1.49 1.42 1.41 1.36 1.32 1.38 1.27 1.22

Engineering with Computers	

1 3

The solution is computed until non-dimensioned time
t = 0.25 , and a shock wave and a contact discontinuity
propagate on the right-hand side of the tube while a rar-
efaction wave propagates on the left-hand side. To analyze
the ALE scheme and the impact of the swaps, we define a
circular region of center (0.75, 0.1) and radius 0.05 which
performs two full rotations within the simulation time frame;
see Fig. 7. As the circular region is rotating, the mesh is
sheared and swaps are performed around the circular region

to maintain a good mesh quality. As the shock wave and the
contact discontinuity move through the rotating region dur-
ing the simulation time frame, we can analyze the impact of
the interpolation stage when swaps are performed. For com-
parison, we also run the simulation on the same fixed mesh.
Figure 8 shows the results on the fixed mesh (top), and on
the moving mesh using the linear interpolation when swaps
are performed (middle) and using the P1-exact conserva-
tive interpolation (bottom). Extraction of the density profile
along the line y = 0.0483256 is given in Fig. 9.

We can observe that some defects in the solution appear
in the contact discontinuity when the linear interpolation is
considered due to the rotation of a part of the domain. These
defects disappear when the conservative interpolation is used.
The defects are pointed out on the density profile when we
zoom on the contact discontinuity; see Fig. 9 (right). But, they
remain minor when we observe the overall profile.

6.3 � Piston

The third validation test case is an FSI piston case from [37].
It is originally a 1D problem, which is extended to 3D. As
shown in Fig. 10, we consider a gas contained in a 3D cylindri-
cal chamber, closed at one end by a wall, and at the other end
by a moving piston of mass mp and of cross-section Ap .
Besides the forces of pressure, the piston is submitted to a
restoring force modeled by a spring of rigidity kp . A natural

frequency of the piston can be defined by fp =
1

2�

√
kp

mp

 . Let

L0 be the length of the chamber at rest, and u(t) be the displace-
ment of the piston with respect to the position at rest. The gas
is initially at rest, and the piston is held in position u0 . We
consider that all the variables are uniform on each cross-sec-
tion of the cylinder (1D assumption).

It is shown in [37] that the piston is submitted to a resultant
force applied to its center of gravity:

with p(t) being the pressure on the piston. No effects of grav-
ity are taken into account.

In practice, the domain at t = 0 is a rectangular box
of dimensions [−1, 0.2] × [−0.5, 0.5] × [−0.5, 0.5] . The

(28)Fp = −kp u(t) + Ap(p(t) − p(0)),

0 50 100 150 200 250 300 350

10−6

10−5

10−4

time (s)

L
2
er
ro
r

mesh 11k vert. − ALE
mesh 11k vert. − static
mesh 11k vert. − swap
mesh 45k vert. − ALE
mesh 45k vert. − static
mesh 45k vert. − swap
mesh 140k vert. − ALE
mesh 140k vert. − static
mesh 140k vert. − swap
mesh 255k vert. − ALE
mesh 255k vert. − static
mesh 255k vert. − swap
mesh 370k vert. − ALE
mesh 370k vert. − static
mesh 370k vert. − swap
mesh 585k vert. − ALE
mesh 585k vert. − static
mesh 585k vert. − swap
mesh 965k vert. − ALE
mesh 965k vert. − static
mesh 965k vert. − swap
mesh 1.8M vert. − ALE
mesh 1.8M vert. − static
mesh 1.8M vert. − swap

101 102 103 10
10−7

10−6

10−5

10−4

10−3

mesh size (k-vertices)

L
2
er
ro
r

time 1s − ALE
time 1s − static
time 1s − swap
time 8s − ALE
time 8s − static
time 8s − swap
time 50s − ALE
time 50s − static
time 50s − swap
time 100s − ALE
time 100s − static
time 100s − swap
time 200s − ALE
time 200s − static
time 200s − swap
time 540s − ALE
time 540s − static
time 540s − swap
Error order 1
Error order 2

Fig. 6   Test case of the static vortex (3D). Error curves comparing the
simulation on a fixed mesh (red), on a moving mesh without swaps
(blue) and on a moving mesh with swaps (green) for several mesh
sizes. Top, the evolution of the error over time, bottom, convergence
curves with respect to the size of the mesh. (Color figure online)

Fig. 7   Sod’s shock tube problem with a rotating region. Domain geometry where the green region is fixed and the circular red region is rotating
(performing two full rotations during the simulation). (Color figure online)

	 Engineering with Computers

1 3

vertical face at x = 0.2 is mobile, and all the other faces are
fixed, which corresponds to l0 = 1 and u0 = 0.2 . The piston
rigidity is set to kp = 107 Nm−1 , and a variety of piston
masses (and thus frequencies) are considered: mp = 4 kg,
10 kg, 100 kg and 1000 kg, corresponding, respectively,
to frequencies fp = 252 Hz, 159 Hz, 50 Hz and 16 Hz.

The other parameters are: �0 = 1.1615 kgm−3 , p0 = 105 Pa,
�0 = 0 m s−1.3 Slipping conditions are imposed on all the
boundary faces (fixed and mobile). From a moving mesh

Fig. 8   Sod’s shock tube
problem with a rotating region.
From top to bottom, density
iso-values and iso-lines at
non-dimensioned time t = 0.25
for the fixed mesh, the moving
mesh with linear interpolation,
and the moving mesh with the
P1-exact conservative interpola-
tion

Fig. 9   Sod’s shock tube problem with a rotating region. Extraction of the density profile along the line y = 0.0483256 at non-dimensioned time
t = 0.25 . Bottom, zoom on the contact discontinuity region

3  For more details on the description of the test in [37], see the
source code referred in the paper.

Engineering with Computers	

1 3

point of view, it is essential to allow tangential movement
of the vertices on the moving faces of the box.

The quantities of interest are the displacement and
the pressure of the piston. For the pressure, we consider
the pressure at its center of gravity. These two quantities
are plotted in Fig. 11. Regarding the piston movement,
it is periodic, as expected, with a period Tp = 1∕fp (see
Table 4), the amplitude of the oscillations being damped
due to FSI effects. These curves are similar to the results
of [37] for the cases mp = 10 kg, 100 kg and 1000 kg. To
highlight the FSI effect, we added a case with a smaller
mass mp = 4 kg, where the reduction of the amplitude of
the oscillations is even clearer. As concerns the piston
pressure, the results also correspond to [37]. We ran the
case with several mesh sizes (from 200,000 to one million
vertices) and several temporal schemes, and all results are
consistent. The pressure fields at a time around 2/5 of the
final time are shown in Fig. 12 for the four masses con-
sidered. We can see that the 1D structure of the solution
is well preserved.

7 � Some application examples

Finally, we analyze the behavior of our strategy on two
more complex, industrial-like, examples of simulations
in three dimensions. These examples are challenging due
both to the size of the meshes considered, and to the large
displacement of the geometries. Note that a linear inter-
polation was used after edge/face swaps as no shocks are
present in the flow-field, and it does not alter the conclu-
sions of these examples.

7.1 � Two F117 aircraft crossing flight paths

The first example models two notional F117 aircraft
with crossing flight paths. This problem illustrates well
the efficiency of the connectivity-change moving mesh
algorithm in handling large displacements of complex
geometries without global remeshing. When both air-
craft cross each other, the mesh deformation encounters
a large shearing due to the opposite flight directions. The
connectivity-change mesh deformation algorithm easily
handles this complex displacement thanks to the mesh
local reconnection. Therefore, the mesh quality remains
very good during the whole displacement, without any
remeshing step.

As concerns the fluid simulation, the aircraft are moved
with an imposed motion of translation and rotation at a
speed of Mach 0.4, in an initially inert uniform fluid: at
t = 0 the speed of the air is null everywhere. Transmitting
boundary conditions are used on the sides of the surround-
ing box, while slipping conditions are imposed on the two
F117 bodies. After a short phase of initialization, the flow
is established when the two F117s pass each other, and the
density fields around the aircraft and in their wake interact.
Acoustic waves are created in front of the F117s due to
the instantaneous setting in motion of the aircraft. This is
not realistic, but our aim was to validate our moving mesh
approach rather than run a physically realistic simulation.
In Fig. 13, a zoom on the geometry of the two aircraft is
shown. In Fig. 14, we show both the moving mesh aspect
of the simulation and the flow solution at different time
steps.

The mesh is composed of 585,000 vertices and (ini-
tially) 3.5 million tetrahedra. The whole simulation
requires 22 elasticity solutions and 1600 optimization
steps for a total of 2,500,000 swaps. The final mesh aver-
age quality of 1.4 is excellent and we notice that 99.8%
of the elements have a quality smaller than 2 and only 52
elements have a quality higher than 5.

This simulation was run in a reasonable time: 18 h
were necessary to do 39,000 time steps on a machine with
20 hyperthreaded i7 cores at 2.5 GHz. Very few elasticity
solutions are requires compared to the number of solver
time steps, and the total time required for the solution
of the elasticity problems is only 25 min, which repre-
sents only 2.3% of the total time. The good quality of the
mesh ensures an acceptable solution accuracy through-
out the simulation. The optimization steps (swapping
and smoothing) only take 25 min. As for the impact of
the swaps, it is difficult to evaluate, since the simulation
cannot be run without them. One can notice that on aver-
age, only 66 swaps per solver time step were performed,

Gas Ap

mp, kp

x

0 u(t)
L0

Fig. 10   Piston test case. 2D representation of the problem

Table 4   Piston test case. Natural frequencies and periods for the dif-
ferent masses used

mp (kg) 4 10 100 1000
fp (Hz) 252 159 50 16
Tp (s) 0.004 0.00628 0.0199 0.0628

	 Engineering with Computers

1 3

Fig. 11   Piston test case. Dis-
placement (right) and piston
pressure (left)

Engineering with Computers	

1 3

which is less than 0.0002% of the number of elements of
the mesh, and so is likely to have little influence on the
solution.

7.2 � Ejected cabin door

The last example is the FSI simulation of the ejection of
the door of an over-pressurized aircraft cabin. This test
case has been proposed by aircraft designers, and the aim
is to evaluate when the door hinge will yield under cabin

pressure. Generally, such experiments are done in a hangar
and numerical simulations must be able to predict if the
door will impact the observation area.

From a purely moving mesh point of view, the difficulty
is that the geometry is anisotropic and rolls over the ele-
ments while progressing inside a uniform mesh composed of
965,000 vertices. Another difficulty lies at the beginning of
the movement when the door is ejected from its frame. The
gap between the door and the frame is very small, and the
mesh is sheared in the interstice; see Fig. 15. However, no
remeshing is needed. The connectivity-change moving mesh
strategy is able to get rid of these skewed elements quite
rapidly to finally achieve an excellent quality throughout the
door displacement.

From the FSI point of view, we present a simplified
version of the case—and thus probably not very repre-
sentative of the actual physics involved. However, we
make sure that the solution is physically coherent with
the simplified initial conditions. At time t = 0 , the vol-
ume is divided into two parts: outside and inside the
cabin; see Fig. 15. The inside of the cabin and the outside
are not insulated, so the pressurized air leaks out of the
cabin. The small volume surrounding the door is consid-
ered initially as being outside the cabin. The outside of
the cabin is initialized to classic atmospheric values at
10,000 m ( � = 0.44 kgm−3, � = (0, 0, 0) ms−1, p = 20 kPa).
At this altitude, the air of the cabin should be
pressur ized to simulate an altitude of 2500 m
( � = 0.96 kgm−3, � = (0, 0, 0) ms−1, p = 75 kPa). To sim-
ulate a blast, those values are multiplied by 10 inside the
cabin ( � = 9.6 kgm−3, � = (0, 0, 0) ms−1, p = 750 kPa). The
mass of the door is set to 100 kg.

Snapshots of the solution at different time steps are
shown in Fig. 16. We can see features similar to mach dia-
monds at the rear of the door, due to the high speed of the
door. As concerns the door movement, the door is blown
away from the cabin as expected. However, it acquires a
slow rotation movement. For the time frame considered
( Tend = 0.2s ), gravity has a negligible impact on the trajec-
tory. The mesh is composed of 965,000 vertices and 5.6
millions of tetrahedra. Due to the difficult part where the
door is moving in its frame, the whole simulation requires
29 elasticity solutions and 540 optimization steps for a total
of 875,000 swaps. The final mesh average quality of 1.33
is excellent and we notice that 99.95% of the elements have
a quality smaller than 2 and only 1 element has a quality
higher than 5.

The total time of the simulation is 2 h on a machine
with 20 hyperthreaded i7 cores at 2.5 GHz, for 1122 solver
time steps, including 43 min of elasticity solution. The
number of elasticity solutions is still small compared to
the number of time steps (29 elasticity solutions and 1122
solver time steps), and elasticity solutions do not account

Fig. 12   Piston test case. Pressure fields at 2/5 of the final time.
m = 10 and t = 0.0025 (top), m = 100 and t = 0.0079 (center),
m = 1000 and t = 0.025 (bottom). The mobile piston is on the right

Fig. 13   Test case of the two F117s. Zoom on the aircraft mesh (top)
and solution (bottom) just before they pass each other

	 Engineering with Computers

1 3

for more than a third of the total time. Note that the a
priori unpredictable trajectory of FSI problems gener-
ally results in a slightly higher number of elasticity steps
than with analytic imposed motion. The optimization step
only takes 3 min. Once again, only an average of 0.0001%
swaps per tetrahedra and solver time step are performed,
which is not a lot.

8 � Conclusion

A strategy to run complex three-dimensional simulations
with moving geometries has been presented in this paper.
This strategy lies first on a robust connectivity-change
moving mesh algorithm, which couples an elasticity-
like mesh deformation method and mesh optimizations.

Fig. 14   Test case of the two
F117s. Snapshots of the moving
geometries and the mesh (left)
and density (right)

Engineering with Computers	

1 3

In particular, a reduced number of elasticity solutions
improves the efficiency of the algorithm, while edge/face
swapping makes it possible to deal with the strong shear-
ing of the mesh that occurs when the geometries undergo
large displacement.

To run CFD simulations on such moving meshes, a finite
volumes flow solver for the compressible Euler equations has
been extended to the ALE framework. As regards the temporal
accuracy, the SSPRK schemes considered are based on the
strict application of the discrete geometric conservation law

(DGCL), which is supposed to preserve the accuracy of the
schemes. The displacement of the geometries can be either
imposed a priori, or governed by a 6-DOF fluid–structure
coupling.

The goal of the paper was to demonstrate that this strat-
egy allows us to run complex three-dimensional simula-
tions. Challenging examples of such simulations, were
presented and analyzed, with imposed motion or fully
FSI. Despite the large displacement of the geometries, no
global remeshing was necessary to perform the simula-
tions, while preserving a good mesh quality. The unsteady
solutions of these examples are physically coherent, and
the total CPU time of the simulations is reasonable. The
use of high-order Runge–Kutta schemes was shown to help
reduce the cost of the simulation. Whereas the handling
of the moving mesh usually takes up a large proportion of
the simulation total CPU time, our connectivity-change
moving mesh algorithm only accounts for a small fraction
of that CPU time, most of the time being spent on actually
solving the equations.

Some issues still need to be addressed. A thorough
analysis of the impact of swaps on the solution accuracy
needs to be carried out. We have shown that a conservative
interpolation method improves significantly the accuracy of
the solution in the presence of discontinuities. A compari-
son of this approach with the one described in [51] would
probably be revealing. The elasticity time step is currently
constant and fixed a priori for the whole simulation. The
efficiency of the moving mesh part would be improved if
this time step could be automatically adapted to the move-
ment of the geometries. Finding such an optimal time step
is harder than it seems. The case of non rigid bodies also
has to be addressed: the moving mesh algorithm can handle
deformable bodies [1, 7], but the FSI coupling would be
much more complex.

Finally, this entire strategy was devised to fit within
our metric-based mesh adaptation framework [42]. An
unsteady version of the adaptation algorithm already
exists [3]. It was extended to the case of moving meshes in
3D recently [8], and a goal-oriented version of the process
is developed.

9 � Software used

The solver described in this paper and used to run all the
simulations is Wolf. The meshes were generated using
GHS3d [27] and Feflo.a [43]. The visualization of the
meshes and solutions was done with Vizir [41].

Fig. 15   Test case of the door ejection. Surface mesh and cut plane
just after the beginning of the simulation. Note that the gap between
the door and its frame is very small, and meshed with only one layer
of elements, which increases the difficulty of the moving mesh prob-
lem

	 Engineering with Computers

1 3

Acknowledgements  This work was partially funded by the Airbus
Group Foundation. The authors also gratefully acknowledge the sup-
port of EPRSC Grant EP/R029423/1.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​

mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Fig. 16   Test case of the door
ejection. Snapshots of the
moving geometry and the mesh
(left) and pressure (right)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Engineering with Computers	

1 3

References

	 1.	 Alauzet F (2014) A changing-topology moving mesh technique
for large displacements. Eng Comput 30(2):175–200

	 2.	 Alauzet F (2016) A parallel matrix-free conservative solution
interpolation on unstructured tetrahedral meshes. Comput Meth-
ods Appl Mech Eng 299:116–142

	 3.	 Alauzet F, Frey P, George P, Mohammadi B (2007) 3D tran-
sient fixed point mesh adaptation for time-dependent problems:
Application to CFD simulations. J Comput Phys 222:592–623

	 4.	 Alauzet F, Loseille A (2009) On the use of space filling curves
for parallel anisotropic mesh adaptation. In: Proceedings of the
18th international meshing roundtable. Springer, pp 337–357

	 5.	 Alauzet F, Mehrenberger M (2010) P1-conservative solution
interpolation on unstructured triangular meshes. Int J Numer
Methods Eng 84(13):1552–1588

	 6.	 Baker T, Cavallo P (1999) Dynamic adaptation for deforming
tetrahedral meshes. AIAA J 19:2699–3253

	 7.	 Barral N, Luke E, Alauzet F (2014) Two mesh deformation
methods coupled with a changing-connectivity moving mesh
method for CFD applications. In: Proceedings of the 23th inter-
national meshing roundtable, vol 82. Elsevier, pp 213–227

	 8.	 Barral N, Olivier G, Alauzet F (2017) Time-accurate aniso-
tropic mesh adaptation for three-dimensional time-dependent
problems with body-fitted moving geometries. J Comput Phys
331(Supplement C):157–187

	 9.	 Batina J (1990) Unsteady Euler airfoil solutions using unstruc-
tured dynamic meshes. AIAA J 28(8):1381–1388

	10.	 Batten P, Clarke N, Lambert C, Causon D (1997) On the choice
of wavespeeds for the HLLC Riemann solver. SIAM J Sci Com-
put 18(6):1553–1570

	11.	 Baum J, Luo H, Löhner R (1994) A new ALE adaptive unstruc-
tured methodology for the simulation of moving bodies. In: 32th
AIAA aerospace sciences meeting. AIAA Paper 1994-0414,
Reno, NV, USA

	12.	 Benek J, Buning P, Steger J (1985) A 3D chimera grid embed-
ding technique. In: 7th AIAA computational fluid dynamics
conference. AIAA Paper 1985-1523, Cincinnati, OH, USA

	13.	 Boer AD, van der Schoot M, Bijl H (2007) Mesh deformation
based on radial basis function interpolation. Comput Struct
85:784–795

	14.	 Bruchon J, Digonnet H, Coupez T (2009) Using a signed dis-
tance function for the simulation of metal forming process: for-
mulation of the contact condition and mesh adaptation. From
Lagrangian approach to an Eulerian approach. Int J Numer
Methods Eng 78(8):980–1008

	15.	 Chacón L, Delzanno G, Finn J (2011) Robust, multidimensional
mesh-motion based on Monge–Kantorovich equidistribution. J
Comput Phys 230(1):87–103

	16.	 Compere G, Remacle JF, Jansson J, Hoffman J (2010) A mesh
adaptation framework for dealing with large deforming meshes.
Int J Numer Methods Eng 82(7):843–867

	17.	 Cournède PH, Koobus B, Dervieux A (2006) Positivity statements
for a Mixed-Element-Volume scheme on fixed and moving grids.
Eur J Comput Mech 15(7–8):767–798

	18.	 Debiez C, Dervieux A (2000) Mixed-Element-Volume MUSCL
methods with weak viscosity for steady and unsteady flow calcula-
tions. Comput Fluids 29:89–118

	19.	 Degand C, Farhat C (2002) A three-dimensional torsional spring
analogy method for unstructured dynamic meshes. Comput Struct
80(3–4):305–316

	20.	 Dobrzynski C, Frey P (2008) Anisotropic Delaunay mesh adapta-
tion for unsteady simulations. In: Proceedings of the 17th interna-
tional meshing roundtable. Springer, pp 177–194

	21.	 Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagran-
gian–Eulerian finite element method for transient dynamic
fluid–structure interactions. Comput Methods Appl Mech Eng
33(1):689–723

	22.	 Etienne S, Garon A, Pelletier D (2009) Perspective on the geomet-
ric conservation law and finite element methods for ALE simula-
tions of incompressible flow. J Comput Phys 228(7):2313–2333

	23.	 Etienne S, Garon A, Pelletier D, Cameron C (2010) Philiadium
gregarium versus Aurelia aurita: on propulsion propulsion of jel-
lyfish. In: 48th AIAA aerospace sciences meeting. AIAA Paper
2010-1444, Orlando, FL, USA

	24.	 Farhat C, Geuzaine P, Grandmont C (2001) The discrete geomet-
ric conservation law and the nonlinear stability of ALE schemes
for the solution of flow problems on moving grids. J Comp Phys
174(2):669–694

	25.	 Formaggia L, Nobile F (2004) Stability analysis of second-order
time accurate schemes for ALE-FEM. Comput Methods Appl
Mech Eng 193(39–41):4097–4116

	26.	 Frey P, George P (2008) Mesh generation. Application to finite
elements, 2nd edn. ISTE Ltd and John Wiley & Sons, New York

	27.	 George P, Borouchaki H (2003) “Ultimate” robustness in
meshing an arbitrary polyhedron. Int J Numer Methods Eng
58(7):1061–1089

	28.	 Guardone A, Isola D, Quaranta G (2011) Arbitrary Lagrangian
Eulerian formulation for two-dimensional flows using dynamic
meshes with edge swapping. J Comput Phys 230(20):7706–7722

	29.	 Hassan O, Sørensen K, Morgan K, Weatherill NP (2007) A
method for time accurate turbulent compressible fluid flow
simulation with moving boundary components employing local
remeshing. Int J Numer Methods Fluids 53(8):1243–1266

	30.	 Hay A, Yu K, Etienne S, Garon A, Pelletier D (2014) High-order
temporal accuracy for 3D finite-element ALE flow simulations.
Comput Fluids 100:204–217

	31.	 Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–
Eulerian computing method for all flow speeds. J Comput Phys
14(3):227–253

	32.	 Huang W, Russell RD (2010) Adaptive moving mesh methods,
vol. 174. Springer Science & Business Media

	33.	 Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eule-
rian finite element formulation for incompressible viscous flows.
Comput Methods Appl Mech Eng 29(3):329–349

	34.	 Kitamura K, Fujimoto K, Shima E, Kuzuu K, Wang ZJ (2011)
Validation of arbitrary unstructured CFD code for aerodynamic
analyses. Trans Jpn Soc Aeronaut Space Sci 53(182):311–319

	35.	 Koobus B, Farhat C (1999) Second-order time-accurate and geo-
metrically conservative implicit schemes for flow computations
on unstructured dynamic meshes. Comput Methods Appl Mech
Eng 170(1–2):103–129

	36.	 Kucharik M, Shashkov M (2008) Extension of efficient, swept-
integration-based conservative method for meshes with changing
connectivity. Int J Numer Methods Fluids 56(8):1359–1365

	37.	 Lefrançois E, Boufflet J (2010) An introduction to fluid–struc-
ture interaction: application to the piston problem. SIAM Rev
52(4):747–767

	38.	 Lesoinne M, Farhat C (1996) Geometric conservation laws for
flow problems with moving boundaries and deformable meshes,
and their impact on aeroelastic computations. Comput Methods
Appl Mech Eng 134(1–2):71–90

	39.	 Löhner R (2001) Applied CFD techniques. An introduction based
on finite element methods. Wiley, New York

	40.	 Löhner R, Yang C (1996) Improved ALE mesh velocities for mov-
ing bodies. Commun Numer Methods Eng 12(10):599–608

	41.	 Loseille A, Guillard H, Loyer A (2016) An introduction to Vizir:
an interactive mesh visualization and modification software.
EOCOE, Rome, Italy

	 Engineering with Computers

1 3

	42.	 Loseille A, Alauzet F (2011) Continuous mesh framework. Part
I: well-posed continuous interpolation error. SIAM J Numer Anal
49(1):38–60

	43.	 Loseille A, Menier V (2013) Serial and parallel mesh modifica-
tion through a unique cavity-based primitive. In: Proceedings of
the 22th international meshing roundtable. Springer, Orlando, pp
541–558

	44.	 Luke E, Collins E, Blades E (2012) A fast mesh deformation
method using explicit interpolation. J Comput Phys 231:586–601

	45.	 Maréchal L (2018) Handling unstructured meshes in multi-
threaded environments with the help of hilbert renumbering and
dynamic scheduling. Parallel Comput (under review)

	46.	 Mavriplis D, Yang Z (2006) Construction of the discrete geomet-
ric conservation law for high-order time accurate simulations on
dynamic meshes. J Comput Phys 213(2):557–573

	47.	 Murman S, Aftosmis M, Berger M (2003) Simulation of 6-DOF
motion with cartesian method. In: 41th AIAA aerospace sciences
meeting. AIAAsps2003-1246, Reno, NV, USA

	48.	 Nkonga B (2000) On the conservative and accurate CFD approx-
imations for moving meshes and moving boundaries. Comput
Methods Appl Mech Eng 190(13):1801–1825

	49.	 Nkonga B, Guillard H (1994) Godunov type method on non-struc-
tured meshes for three-dimensional moving boundary problems.
Comput Methods Appl Mech Eng 113(1–2):183–204

	50.	 Olivier G (2011) Anisotropic metric-based mesh adaptation for
unsteady CFD simulations involving moving geometries. Ph.D.
thesis, Université Pierre et Marie Curie, Paris VI, Paris, France

	51.	 Olivier G, Alauzet F (2011) A new changing-topology ALE
scheme for moving mesh unsteady simulations. In: 49th AIAA
aerospace sciences meeting. AIAA Paper 2011-0474, Orlando,
FL, USA

	52.	 Roe P (1981) Approximate Riemann solvers, parameter vectors,
and difference schemes. J Comput Phys 43:357–372

	53.	 Shu C, Osher S (1988) Efficient implementation of essen-
tially non-oscillatory shock-capturing schemes. J Comput Phys
77:439–471

	54.	 Sod G (1978) A survey of several finite difference methods for
systems of nonlinear hyperbolic conservation laws. J Comput Phys
27:1–31

	55.	 Spiteri R, Ruuth S (2002) A new class of optimal high-order
strong-stability-preserving time discretization methods. SIAM J
Numer Anal 40(2):469–491

	56.	 Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid
generation. CRC Press, Boca Raton

	57.	 Yang Z, Mavriplis D (2005) Unstructured dynamic meshes with
higher-order time integration schemes for the unsteady Navier–
Stokes equations. In: 41th AIAA aerospace sciences meeting.
AIAA Paper 2005-1222, Reno, NV, USA

	58.	 Yang Z, Mavriplis D (2007) Higher-order time integration
schemes for aeroelastic applications on unstructured meshes.
AIAA J 45(1):138–150

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach
	Abstract
	1 Introduction
	2 Mesh-connectivity-change moving mesh strategy
	2.1 Linear elasticity mesh deformation method
	2.2 Improving mesh deformation algorithm efficiency
	2.3 Local mesh optimization
	2.4 Handling of boundaries
	2.5 Moving mesh algorithm
	2.6 Moving mesh time steps

	3 Arbitrary Lagrangian Eulerian flow solver
	3.1 Euler equations in the ALE framework
	3.2 Spatial discretization
	3.2.1 Edge-based finite volume solver
	3.2.2 HLLC numerical flux
	3.2.3 High-order scheme
	3.2.4 Limiter
	3.2.5 Boundary conditions

	3.3 Time discretization
	3.3.1 The geometric conservation law
	3.3.2 Discrete GCL enforcement
	3.3.3 RK schemes
	3.3.4 Application to the SSPRK(4,3) scheme
	3.3.5 Practical computation of the volumes swept
	3.3.6 Volumes swept by boundary interfaces
	3.3.7 MUSCL approach and RK schemes
	3.3.8 Computation of the time step
	3.3.9 Handling the swaps

	4 FSI coupling
	4.1 Movement of the geometries
	4.2 Discretization
	4.3 Explicit coupling

	5 Implementation and parallelization
	6 Verification of the solver
	6.1 Static vortex in a rotating mesh
	6.1.1 Space convergence
	6.1.2 Time convergence

	6.2 Sod’s shock tube with a rotating circle
	6.3 Piston

	7 Some application examples
	7.1 Two F117 aircraft crossing flight paths
	7.2 Ejected cabin door

	8 Conclusion
	9 Software used
	Acknowledgements
	References

