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Abstract
This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displace-
ments on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust 
moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in 
previous works, which removes the need for global remeshing when performing large displacements. The optimizations, 
and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We 
propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabili-
ties in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law 
to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven 
by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. 
Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and 
industrial configurations.

Keywords  Moving mesh · Dynamic mesh · Connectivity change · Compressible flows · ALE: Arbitrary Lagrangian 
Eulerian · Discrete geometric conservation law · Fluid–structure interaction · 6-DOF

1  Introduction

Fluid–structure interaction (FSI) simulations are required 
for a wide variety of subjects, from the simulation of jel-
lyfish [23] to the releasing of a missile [47]. The recent 
development of computing capacities has made it possi-
ble to run increasingly complex simulations where mov-
ing bodies interact with an ambient fluid in an unsteady 
way. However, engineers are still far from performing such 
simulations on a daily basis, largely due to the difficulty 

of handling the moving meshes induced by the moving 
geometries.

When the displacement of the geometry is small enough, 
slightly deforming the original mesh [9, 19] can generally 
be acceptable. But when large deformation of the bounda-
ries is considered, the mesh quickly becomes distorted and 
the numerical error due to this distortion quickly becomes 
too great, until the elements of the mesh finally become 
invalid, and the simulation has to be stopped. Specific 
strategies need to be developed to deal with large displace-
ment moving boundary problems. In the case of FSI prob-
lems, another difficulty arises from the fact that the dis-
placement of the boundaries is by definition an unknown, 
and the deformation of the mesh cannot be imposed a 
priori. Addressing the issue of the mesh movement can-
not be separated from addressing the issue of the solver 
that will compute on these moving meshes. Depending on 
the strategy employed to deal with the movement, specific 
numerical methods must be designed to take into account 
the displacement of the mesh. The question this paper 
focuses on is: how can we efficiently move the mesh for 
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large displacement 3D FSI simulations and what numerical 
schemes need to be associated to such a strategy?

Three main approaches to address the mesh movement 
problem can be found in the literature. The first approach 
consists in having a single body-fitted mesh [11, 29], and 
moving it along with the moving boundaries. The mesh 
may thus undergo large deformation. The second approach 
is the Chimera (or overset) method [12], in which each 
moving body has its own body-fitted sub-mesh, and the 
sub-meshes move rigidly together with their body and 
can overlap one another. Finally the embedded boundary 
approach [14, 39] uses meshes that are not body-fitted at 
all: the bodies are embedded in a fixed grid, and techniques 
such as level-sets are used to recover their moving bounda-
ries. All three approaches have their own strengths and 
weaknesses. This paper is aligned with our previous works 
on anisotropic mesh adaptation, with the ultimate goal to 
use moving geometries in our adaptation framework [8]. 
For this reason, we focus on body-fitted approaches with 
one single mesh.

The first strategy to handle body-fitted moving meshes 
is simply to move the mesh for as long as possible, and 
remesh (i.e., generate a whole new mesh or a part of it) 
when the mesh quality becomes critical [11, 29]. For each 
remeshing, the simulation has to be stopped, a new mesh 
must be generated, and the solution must be transferred to 
the new mesh. This approach can be efficient, especially 
when small displacements are considered and very few 
remeshings are necessary, because the solver and the mesh-
ing aspects are decoupled, and between two remeshings the 
simulation is fully ALE and free from interpolation errors. 
However, for larger displacements, the number of remesh-
ings increases to prevent invalid elements from appearing, 
and this can both be costly and result in poor accuracy due 
to the solution transfer step. Hence a second strategy has 
been developed [16, 20], based on the use of local remeshing 
operations, such as vertex insertion, vertex collapse, connec-
tivity changes and vertex displacements, to preserve a good 
mesh quality throughout the simulation. The advantage of 
this method is that it maintains an acceptable mesh quality 
without needing to stop, remesh and resume the simulation. 
However, it requires fully dynamic mesh data structures that 
are permanently updated, which can lead to a loss of CPU 
efficiency, and the numerous mesh modifications can lead 
to a loss of accuracy.

Our approach tries to overcome to these drawbacks and 
is described in detail in [1]. It aims at moving meshes with 
large displacements of the geometry without ever having to 
remesh. [By remeshing, we mean stopping the simulation, 
generating a new mesh (the entire mesh or part of it) and 
interpolating the solution on the new mesh.] A limited set 
of mesh modifications are used to preserve the mesh quality 
throughout the simulation: only connectivity changes (edge 

swaps) and vertex displacement are performed. This is for 
several reasons. Notably, performing local mesh modifica-
tions within the solver is far simpler than remeshing glob-
ally, and connectivity changes can be relatively simply inter-
preted in terms of evanescent cells for purposes of Arbitrary 
Lagrangian Eulerian (ALE) numerical schemes. In many 
body-fitted moving mesh strategies, a lot of CPU time is 
dedicated to computing the displacement of the mesh, in 
order to make it follow the moving boundaries. Thanks to 
frequent mesh optimizations, the cost of this step is reduced 
by computing the mesh deformation for a large number of 
solver time steps (i.e., we do it only a few times during the 
simulation). It is important to note that this approach works 
best if vertex-centered solvers are considered, because the 
connectivity changes preserve the number of degrees of 
freedom.

Some studies try to impose a mesh motion that is directly 
adapted to the physical phenomena in question, using for 
instance either so-called Moving Mesh PDEs  [32] or a 
Monge–Ampère equation [15]. However, interesting these 
approaches may be, they still seem to be time-consuming, 
especially in 3D, due to the solution of a non-linear equation, 
and it is unsure whether they can handle complex 3D geom-
etries. Therefore we prefer to prescribe arbitrary movements 
to the mesh, and use our mesh adaptation framework [42] 
when necessary.

Regarding numerical solvers, we consider a classic frame-
work for moving meshes: the Arbitrary Lagrangian Eulerian 
(ALE) framework, which is based on a formulation of the 
equations that takes into account an arbitrary movement of 
the vertices. This technique was introduced in the 1970s 
in [21, 31, 33]. Since then, so many developments have been 
made in that field that a complete list of them would not fit 
in this paper. However, one may in particular refer to [11, 
24, 25, 29, 30, 46, 49], which mainly focus on improving 
temporal schemes for ALE simulations.

To our knowledge, very few examples of ALE solvers 
coupled with connectivity-change moving mesh techniques 
can be found in literature. In [36] a conservative interpola-
tion is proposed to handle the swaps. In [28, 51] an ALE 
formulation of the swap operator is built. However, these 
studies are limited to 2D. Driven by the requirements of 
industry, we are interested in designing a method that works 
in 3D. In this paper, a linear interpolation is carried out after 
each swap instead of using a specific ALE formulation, and 
we will evaluate the numerical error due to these swaps.

The goal of the present paper is to demonstrate that 
three-dimensional FSI simulations can be run efficiently by 
coupling an ALE solver to our connectivity-change mov-
ing mesh strategy. The first part of this paper focuses on 
recalling important aspects of the moving mesh algorithm. 
The second, third and fourth parts describe in detail the 
solver used. In the fifth part, some validation test cases are 
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presented, and finally some examples of complex 3D ALE 
simulations are given and analyzed. In this paper, we only 
focus on rigid movements that are involved in rigid-body 
FSI.

2 � Mesh‑connectivity‑change moving mesh 
strategy

To handle moving boundaries, we adopt a body-fitted 
approach, with a single mesh: the inner vertices of the 
mesh are moved following the moving boundaries to pre-
serve the validity of mesh (i.e., to prevent the mesh from 
getting tangled). Our strategy involves two main parts:

•	 Computing the mesh deformation Inner vertices are 
assigned a trajectory depending on the displacement 
of the boundaries, and thus a position for future time 
steps.

•	 Optimizing the mesh The trajectories computed in the 
mesh deformation phase are corrected, and the connec-
tivity of the mesh is modified to preserve the quality of 
the mesh.

This strategy, detailed below, has proven to be very power-
ful in 3D [1], since large displacement of complex geom-
etries can be performed while preserving a good mesh 
quality without any global remeshing (i.e., without ever 
generating a whole new mesh).

2.1 � Linear elasticity mesh deformation method

During the mesh deformation step, a displacement field is 
computed for the whole computational domain, given the 
displacement of its boundaries. Trajectories can thus be 
assigned to inner vertices, or in other words, positions at 
a future solver time step.

Several techniques can be found to compute this dis-
placement field: implicit or direct interpolation [13, 44], 
or solving PDEs—the most common of which being 
Laplacian smoothing [40], a spring analogy [19] and a 
linear elasticity analogy [6]. It is this last method that we 
selected, due to its robustness in 3D [58]. The compu-
tational domain is assimilated to a soft elastic material, 
which is deformed by the displacement of its boundaries.

The inner vertices movement is obtained by solving an 
elasticity-like equation with a ℙ1 finite element method 
(FEM):

(1)div(�()) = 0, with  =
∇� + T∇�

2
,

where � and  are, respectively, the Cauchy stress and strain 
tensors, and � is the Lagrangian displacement of the vertices. 
The Cauchy stress tensor follows Hooke’s law for an iso-
tropic homogeneous medium. Dirichlet boundary conditions 
are used and the displacement of vertices located on the 
domain boundary is strongly enforced in the linear system. 
The linear system is solved by a conjugate gradient algo-
rithm coupled with an LU-SGS pre-conditioner. An advan-
tage of elasticity-like methods is the opportunity they offer 
to adapt the local material properties of the mesh, especially 
its stiffness, according to the distortion and efforts borne by 
each element. In particular, the stiffness of the elements is 
increased for small elements, in order to limit their distor-
tion. More details can be found in [1].

2.2 � Improving mesh deformation algorithm 
efficiency

The computation of the mesh deformation—here the solu-
tion of a linear elasticity problem—is known to be an expen-
sive part of dynamic mesh simulations, and the fact that it 
is usually performed at every solver time step makes it all 
the more so.

We propose to combine several techniques to improve 
the time efficiency of this step. Some regions are rigidi-
fied, more specifically a few layers around tiny complex 
details of the moving bodies, with very small elements. 
They are moved with exactly the same rigid displace-
ment as the corresponding body, thus avoiding very stiff 
elements in the elasticity matrix. On the other hand, the 
elasticity can be solved only on a reduced region, if the 
domain is big compared to the displacement. A coarse 
mesh can also be used to solve the elasticity problem, the 
displacement of the vertices then being interpolated on the 
computational mesh.

The major improvement we proposed is to reduce the 
number of mesh deformation computations: the elasticity 
problem is solved for a large time frame of length Δt instead 
of doing it at each solver time step �t . While there is a risk 
of a less effective mesh displacement solution, it is a worth-
while strategy if our methodology is able to handle large 
displacements while preserving the mesh quality. Solving 
the previously described mesh deformation problem once 
for large time frame could be problematic in the case of: (1) 
curved trajectories of the boundary vertices and (2) acceler-
ating bodies. To enhance the mesh deformation prescription, 
accelerated-velocity curved, i.e., high-order, vertex trajec-
tories are computed.

The paths of inner vertices can be improved if a constant 
acceleration � is provided to each vertex in addition to its 
speed, which results in an accelerated and curved trajectory. 
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During time frame [t, t + Δt] , the position and the velocity 
of a vertex are updated as follows:

Prescribing a velocity vector and an acceleration vector 
to each vertex requires solving two elasticity systems. For 
both systems, the same matrix, thus the same pre-condi-
tioner, is considered. Only boundary conditions change. 
If inner vertex displacement is sought for time frame 
[t, t + Δt], boundary conditions are imposed by the location 
of the body at time t + Δt∕2 and t + Δt. These locations are 
computed using body velocity and acceleration. Note that 
solving the second linear system is cheaper than solving 
the first one as a good prediction of the expected solution 
can be obtained from the solution of the first linear system. 
Now, to define the trajectory of each vertex, the velocity 
and acceleration are deduced from evaluated middle and 
final positions:

In this context, it is mandatory to make sure that the mesh 
remains valid for the whole time frame [t, t + Δt], which is 
done by computing the sign of the volume of the elements 
all along their path [1].

2.3 � Local mesh optimization

In order to preserve the mesh quality between two mesh defor-
mation computations, it has been proposed [1] to couple mesh 
deformation with local mesh optimization using smoothing 
and generalized swapping to efficiently achieve large displace-
ment in moving mesh applications. Connectivity changes 
are really effective in handling shear and removing highly 
skewed elements. Here, we briefly recall the mesh optimiza-
tion procedure.

For 3D meshes, the quality of an element is measured in 
terms of the element shape by the quality function:

where �(�) and |K| are edge length and element volume. 
Q(K) = 1 corresponds to a perfectly regular element and 
Q(K) < 2 corresponds to excellent quality elements, while 
a high value of Q(K) indicates a nearly degenerated element.

�(t + �t) =�(t) + �t �(t) +
�t2

2
�

�(t + �t) =�(t) + �t �.

Δt �(t) = − 3 �(t) + 4�(t + Δt∕2) − �(t + Δt)

Δt2

2
� =2�(t) − 4�(t + Δt∕2) + 2�(t + Δt).

(2)
Q(K) =

√
3

216

�∑6

i=1
�
2(�i)

� 3

2

�K� ∈ [1, +∞],

The first mesh optimization tool is vertex smoothing which 
consists in relocating each vertex inside its ball of elements, 
i.e., the set of elements having Pi as their vertex. For each 
tetrahedron Kj of the ball of Pi , a new optimal position Popt

j
 for 

Pi can be proposed to form a regular tetrahedron:

where Fj is the face of Kj opposite vertex Pi , Gj is the center 
of gravity of Fj , �j is the inward normal to Fj and �(�j) the 
length of �j . The final optimal position Popt

i
 is computed as 

a weighted average of all these optimal positions {Popt

j
}Kj⊃Pi

 , 

the weight coefficients being the quality of Kj . This way, an 
element of the ball is all the more dominant if its quality in 
the original mesh is bad. Finally, the new position is ana-
lyzed: if it improves the worst quality of the ball, the vertex 
is directly moved to its new position.

The second mesh optimization tool to improve mesh qual-
ity is generalized swapping/local-reconnection (Fig. 1). Let 
� and � be the two tetrahedra vertices opposite the common 
face P1P2P3 . Face swapping consists of suppressing this face 
and creating the edge � = �� . In this case, the two original 
tetrahedra are deleted and three new tetrahedra are created. 
This swap is called 2 → 3 . The reverse operator can also 
be defined by deleting three tetrahedra sharing such a com-
mon edge �� and creating two new tetrahedra sharing face 
P1P2P3 . This swap is called 3 → 2.

A generalization of this operation exists and acts on shells 
of tetrahedra [1, 26]. For an internal edge � = �� , the shell 
of � is the set of tetrahedra having � as common edge. The 
different edge swaps are generally denoted n → m, where n 

P
opt

j
= Gj +

√
2

3

�j

�(�j)
,

3 → 2

3 ← 2
(face swapping)

5 → 6

5 possible triangulations

e e

e

Fig. 1   Top left, the swap operation in two dimensions. Top right, 
edge swap of type 3 → 2 and face swap 2 → 3 . Bottom left, the five 
possible triangulations of the pseudo-polygon for a shell having five 
elements. Bottom right, an example of 5 → 6 edge swap. For all these 
figures, shells are in black, old edges are in red, new edges in green 
and the pseudo-polygon is in blue. (Color figure online)
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is the size of the shell and m is the number of new tetrahedra. 
In this work, edge swaps 3 → 2 , 4 → 4 , 5 → 6 , 6 → 8 and 
7 → 10 have been implemented. In our algorithm, swaps 
are only performed if they improve the quality of the mesh.

These operations are well-known in the field of mesh 
generation [26, 56], but are not necessarily efficient in the 
context of this work. Notably, performing too many of them 
results in slow codes, whereas the use of bad quality func-
tions results in poor quality meshes. The interest of the 
method used in this paper lies how and when optimizations 
are performed. The mesh optimizations are performed ele-
ment by element, and only when they are needed. Smooth-
ing is performed for every vertex, provided it increases the 
quality of the corresponding ball. Swaps are only performed, 
i.e., when the quality of an element decreases and passes 
a certain threshold. Tetrahedra are treated in quality order 
from the worst to the best one. The operation is performed 
only if it verifies quality criteria on the current position of 
the mesh and on the final position given by the mesh defor-
mation. A key to performing efficient swaps in the moving 
mesh context is to allow a slight quality degradation in the 
future. Details on this optimization step can be found in [1].

2.4 � Handling of boundaries

The mesh of the boundaries is moved rigidly, and the verti-
ces are not usually moved on the surface (no displacement 
in the tangential directions). However, in some cases, such 
as when a body is moving very close to the bounding box 
of the domain, it can be useful to move the vertices of the 
bounding box as well. In this case, we can allow tangen-
tial displacement on the boundary. The risk of deforming a 
curved surface being too great, we only do this for planes 
aligned with the Cartesian frame. To do so, the displace-
ments along the tangential axes are simply considered as 
new degrees of freedom. For instance, for a plane (x, y), the 
displacements along the x-axis and the y-axis are considered 
as degrees of freedom and are added to the elasticity system. 
The displacement along the z-axis is still set to 0, and thus is 
not added to the system.

2.5 � Moving mesh algorithm

The overall connectivity-change moving mesh algorithm is 
described in Algorithm 1, where the different phases described 
above are put together. When coupled with a flow solver (see 
Sect. 3), the flow solver is called after the optimization phase. 
In this algorithm,  stands for meshes,  for solutions, Q for 
quality (see Relation (2)), �

⏐�Ωh
 for the displacement on the 

boundary, and � and � for speed and acceleration. Δt and �t are 
time steps whose meaning is detailed below.

CFL
CFL

In Algorithm 1, three time steps appear: a large one 
Δt for the mesh deformation computation, a smaller one 
�topt corresponding to the steps where the mesh is opti-
mized, and the solver time step �tsolver . Δt , is currently 
set manually at the beginning of the computation. After 
each mesh deformation solution, the quality of the mesh 
in the future is analyzed: if the quality is too low, the mesh 
deformation is problem is solved again with a smaller Δt 
(Algorithm 1 step 2(d)). Moreover, if the mesh quality 
degrades, a new mesh deformation solution is computed 
(Algorithm 1 step 3(g)). �topt is computed automatically, 
using the CFLgeom parameter as described below. Deter-
mining �tsolver will be discussed in Sect. 3. If the solver 
time step �tsolver is greater than the optimization time step, 
then the solver time step is truncated to follow the opti-
mizations. If �tsolver is smaller than the optimization time 
step—which is almost always the case—several iterations 
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of the flow solver are performed between two optimiza-
tion steps.

2.6 � Moving mesh time steps

A good restriction to be imposed on the mesh movement 
to limit the apparition of flat or inverted elements is that 
vertices cannot cross too many elements on a single move 
between two mesh optimizations. Therefore, a geometric 
parameter CFLgeom is introduced to control the number of 
stages used to perform the mesh displacement between t and 
t + Δt . If CFLgeom is greater than one, the mesh is authorized 
to cross more than one element in a single move. In practice, 
CFLgeom is usually set between 1 and 8. The moving geomet-
ric time step is given by:

where h(�i) is the smallest height of all the elements in the 
ball of vertex Pi . In practice, when coupled with a flow 
solver, the actual time step is the minimum between the flow 
solver time step and the geometric one.

3 � Arbitrary Lagrangian Eulerian flow solver

An Arbitrary Lagrangian Eulerian (ALE) flow solver has 
been coupled to the moving mesh process described in Algo-
rithm 1. In this section, we discuss in detail the implemented 
solver, and all the choices that were made from the numerous 
possibilities available in the literature.

3.1 � Euler equations in the ALE framework

We consider the compressible Euler equations for a New-
tonian fluid in their ALE formulation. The ALE formu-
lation allows the equations to take arbitrary motion of 
the mesh into account. Assuming that the gas is perfect, 
inviscid and that there is no thermal diffusion, the ALE 
formulation of the equations is written, for any arbitrary 
closed volume C(t) of boundary �C(t) moved with mesh 
velocity w:

(3)�topt = CFLgeom max
Pi

h(�i)

�(�i)
,

(4)

d

dt

(
�C(t)

�d�

)
+ �

𝜕C(t)

( (�) −� ⊗ w) ⋅ � d�

= �C(t)

�ext d�

⟺
d

dt

(
�C(t)

�d�

)
+ �

𝜕C(t)

(�(�) −�(w ⋅ �)) d�

= �C(t)

�ext d�,

where

and we have noted � the density of the fluid, p the pressure, 
� = (ux, uy, uz) its Eulerian velocity, � = � ⋅ � , q = ‖�‖ , � 
the internal energy per unit mass, e = 1∕2 q2 + � the total 
energy per unit mass, h = e + p∕� the enthalpy per unit mass 
of the flow, �ext the resultant of the volumic external forces 
applied on the particle and � the outward normal to interface 
�C(t) of C(t).

3.2 � Spatial discretization

As regards spatial discretization of the solver, we use an 
edge-based finite-volume approach, with an HLLC Riemann 
approximate solver and second-order MUSCL gradient 
reconstruction. The main difference when translating these 
schemes from the standard formulation to the ALE formula-
tion is the addition of the mesh velocities in the wave speeds 
of the Riemann problem.

3.2.1 � Edge‑based finite volume solver

The domain Ω is discretized by a tetrahedral unstructured 
mesh  . The vertex-centered finite volume formulation con-
sists in associating a control volume denoted Ci(t) with each 
vertex Pi of the mesh and at each time t. The dual finite vol-
ume cell mesh is built by the rule of medians. The common 
boundary �Cij(t) = �Ci(t) ∩ �Cj(t) between two neighboring 
cells Ci(t) and Cj(t) is decomposed into several triangular 
interface facets. The normal flux �ij(t) along each cell inter-
face is taken to be constant (not in time but in space), just 
like the solution �ij on the interface.

Rewriting System (4) for C(t) = Ci(t) , we get the follow-
ing semi-discretization at Pi:

–	 �i(t) is the mean value of state � in cell Ci at time t
–	 Vi is the set of all neighboring vertices of Pi , i.e., the 

mesh vertices connected connected to Pi by an edge

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� = (�, ��, �e)T is the conservative variables vector

 (�) =
�
��, �ux� + p�x, �uy� + p�y, �uz� + p�z, ��h

�
is the

flux tensor

�(�) =  (�) ⋅ �

=
�
��, �ux� + pnx, �uy� + pny, �uz� + pnz, �e� + p�

�T
�ext =

�
0, � �ext, �� ⋅ �ext

�T
is the contribution of the external

forces,

(5)

d

dt

(|Ci(t)|�i(t)
)
+

∑
Pj∈Vi

|�Cij(t)|�ij

(
�i(t), �j(t), �ij(t), �ij(t)

)
= 0,
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–	 �ij is the outward normalized normal (with respect to cell 
Ci ) of cell interface �Cij

–	 �ij(t) =  (�ij(t)) ⋅ �ij(t) is an approximation of the physi-
cal flux through �Cij(t).

–	 �ij(t) =
1

|�Cij(t)| ∫�Cij(t)

wij(t) ⋅ �ij(t)ds is the normal veloc-

ity of cell interface �Cij(t)

–	 �ij

(
�i(t),�j(t), �ij(t), �ij(t)

)
≈ �ij(t) − �ij(t)�ij(t) is the 

numerical flux function used to approximate the flux at cell 
interface �Cij(t).

The computation of the convective fluxes is performed mono-
dimensionally in the direction normal to each finite volume 
cell interface. Consequently, the numerical evaluation of the 
flux function �ij at interface �Cij can be achieved by solv-
ing, at each time step, a one-dimensional Riemann problem 
in direction �ij = � with initial values �L = �i on the left of 
the interface and �R = �j on the right. The normal speed to 
the interface is temporarily noted � for clarity.

3.2.2 � HLLC numerical flux

The methodology provided by Batten [10] can be extended to 
the Euler equations in their ALE formulation. The HLLC flux 
is then described by three waves phase velocities:

and two approximate states:

where � = � ⋅ � is the interface normal velocity and .̃ are Roe 
average variables [52]. The HLLC flux through the interface 
is finally given by:

SL = min(𝜂L − cL, 𝜂̃ − c̃) and SR = max(𝜂R + cR, 𝜂̃ + c̃)

SM =
𝜌R𝜂R(SR − 𝜂R) − 𝜌L𝜂L(SL − 𝜂L) + pL − pR

𝜌R(SR − 𝜂R) − 𝜌L(SL − 𝜂L)

�∗
L
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
L
= �L

SL − �L

SL − SM
p∗
L
= p∗ = �L

�
�L − SL

��
�L − SM

�
+ pL

(��)∗
L
=

�
SL − �L

�
��L +

�
p∗ − pL

�
�

SL − SM

(�e)∗
L
=

�
SL − �L

�
�eL − pL�L + p∗SM

SL − SM

,

�∗
R
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
R
= �R

SR − �R

SR − SM
p∗
R
= p∗ = �R

�
�R − SR

��
�R − SM

�
+ pR

(��)∗
R
=

�
SR − �R

�
��R +

�
p∗ − pR

�
�

SR − SM

(�e)∗
R
=

�
SR − �R

�
�eR − pR�R + p∗SM

SR − SM

,

The HLLC approximate Riemann solver has the following 
properties. It automatically: (1) satisfies the entropy inequal-
ity; (2) resolves isolated contacts exactly; (3) resolves iso-
lated shocks exactly and (4) preserves positivity.

3.2.3 � High‑order scheme

The previous formulation reaches at best a first-order spatial 
accuracy. A MUSCL type reconstruction method has been 
designed to increase the order of accuracy of the scheme. The 
idea is to use extrapolated values �ij and �ji of � at interface 
�Cij to evaluate the flux, where � = (�, �, p) is the vector of 
physical variables. The following approximation is performed: 
�ij = �(�ij,�ji, �ij, �ij) with �ij and �ji linearly interpolated 
state values on each side of the interface:

In contrast to the original MUSCL approach, the approx-
imate “slopes” (∇�)ij and (∇�)ji are defined for each 
edge using a combination of centered, upwind and nodal 
gradients.

The centered gradient related to edge �i�j , is defined 
implicitly along edge �i�j via relation:

Upwind and downwind gradients, which are also related to 
edge �i�j , are computed using the upstream and downstream 
tetrahedra associated with this edge. These tetrahedra are, 
respectively, denoted Kij and Kji . Kij (resp. Kji ) is the unique 
tetrahedron of the ball of Pi (resp. Pj ) whose opposite face 
is crossed by the straight line prolongating edge �i�j ; see 
Fig. 2. Upwind and downwind gradients of edge �i�j are 
then defined as:

�HLLC(�L,�R, �, 𝜎) =

⎧
⎪⎨⎪⎩

�L − 𝜎�L if SL − 𝜎 > 0

�∗
L
− 𝜎�∗

L
if SL − 𝜎 ≤ 0 < SM − 𝜎

�∗
R
− 𝜎�∗

R
if SM − 𝜎 ≤ 0 ≤ SR − 𝜎

�R − 𝜎�R if SR − 𝜎 < 0

.

(6)
�ij = �i +

1

2
(∇�)ij�i�j, and �ji = �j +

1

2
(∇�)ji�i�j.

(7)(∇�)C
ij
�i�j = �j − �i.

MjMi

Pi Pj

Kij

Kji

Fig. 2   Downstream Kij and upstream Kji tetrahedra associated with 
edge �i�j
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where

is the ℙ1-Galerkin gradient on element K and �P is the basis 
function associated with P. Parametrized nodal gradients are 
built by introducing the �-scheme:

where � ∈ [0, 1] is a parameter controlling the amount of 
upwinding. For instance, the scheme is centered for � = 0 
and fully upwind for � = 1.

The most accurate �-scheme is obtained for � = 1∕3 , also 
called the V4-scheme. This scheme is third-order for the 
two-dimensional linear advection problem on structured tri-
angular meshes. In our case, for the non-linear Euler equa-
tions on unstructured meshes, a second-order scheme with 
a fourth-order numerical dissipation is obtained [18]. The 
high-order gradients are given by:

3.2.4 � Limiter

The previous MUSCL schemes are neither monotone nor 
positive. Therefore, limiting functions must be coupled to 
the previous high-order gradient evaluations to preserve the 
monotonicity and positivity of the scheme. To this end, the 
gradient of Relation (6) is replaced by a limited gradient 
denoted (∇�lim)ij . Here, the three-entry limiter introduced 
by Dervieux [17], which is a generalization of the SuperBee 
limiter, will be used :

with

The operator L defined above is applied component by 
component.

3.2.5 � Boundary conditions

Boundary conditions are computed vertexwise. Several 
conditions are used, but only one, the slipping condition, is 
applied to moving bodies. In the context of ALE simulation, 

(∇�)U
ij
= (∇�)|Kij and (∇�)D

ij
= (∇�)|Kji ,

∇�|K =
∑
P∈K

(
∇𝜙P ⊗ �P

)

∇�ij �i�j = (1 − �)(∇�)C
ij
�i�j + � (∇�)U

ij
�i�j,

∇�ji �i�j = (1 − �)(∇�)C
ij
�i�j + � (∇�)D

ij
�i�j,

(∇�)V4
ij

�i�j =
2

3
(∇�)C

ij
�i�j +

1

3
(∇�)U

ij
�i�j,

(∇�)V4
ji

�i�j =
2

3
(∇�)C

ij
�i�j +

1

3
(∇�)D

ij
�i�j.

(8)

(
∇�lim

)
ij
�i�j = L

((
∇�D

)
ij
�i�j,

(
∇�C

)
ij
�i�j,

(
∇�V4

)
ij
�i�j

)

L(a, b, c) =

{
0 if ab ≤ 0

sign(a)min(2 |a|, 2 |b|, |c|) otherwise .

this condition has to take into account the displacement of 
the body. Consequently, we impose weakly1

where �i is the DGCL compatible unitary boundary face 
normal and �i is the boundary face velocity.

The standard ALE slipping boundary flux of vertex Pi 
reduces to:

where �𝜕Ci�Γ =
∑

Kj⊃Pi

1

3
�Kj� is the interface area, see 

Sect. 3.3.6, pi is the vertex pressure, �i =
∑

Kj⊃Pi
�Kj��Kj∑

Kj⊃Pi
�Kj�  is the 

mean outward normal of the boundary interface and . How-
ever, when high-order numerical schemes are considered, 
such a boundary condition creates oscillations in the density 
and the pressure when shock waves impact normally the 
boundary. We thus prefer considering a mirror state and 
apply an approximate Riemann state to diminish these 
oscillations.

We thus have to evaluate the flux between the state on the 
boundary � and the ALE mirror state �:

as the mirror state verifies

To evaluate the boundary flux, we consider the HLLC 
numerical flux between the state and the mirror state:

Note that by definition we have

Thus, if Condition  (9) is satisfied, then �i = �i and 
the flux �slip

(
�i, �i, �i

)
 simplifies to the form in Rela-

tion (10). In general, this condition is not satisfied, so we 
use Relation (11).

(9)�i ⋅ �i = �i,

(10)�slip

�
�i, �i, �i

�
=

⎛
⎜⎜⎝

0

−pi
�i

‖�i‖
−pi�i

⎞
⎟⎟⎠
��Ci�Γ,

�i =

⎛⎜⎜⎝

�i
�i�i
�iEi

⎞⎟⎟⎠
and �i =

⎛⎜⎜⎝

�i
��i − 2 �i (�i ⋅ �i − �i)�i
�Ei − 2 �i �i (�i ⋅ �i − �i)

⎞⎟⎟⎠

pi =pi, �i = �i, ci = ci, �i ⋅ �i = 2 �i − �i ⋅ �i and

Hi =Hi − 2 �i (�i ⋅ �i − �i).

(11)�slip

(
�i, �i, �i

)
= �HLLC

(
�i,�i, �i, �i

)
.

�HLLC(�i,�i, �i, �i) = �(�i) − �i�i.

1  We do not enforce the numerical solution to verify �
i
.�

i
= �

i
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3.3 � Time discretization

Temporal discretization is a more complex matter. In this 
work, we chose an explicit time discretization, which is 
simpler than implicit discretizations. Our time discretiza-
tion is compliant with the discrete geometric conservation 
law, which can be used to rigorously determine when the 
geometric parameters that appear in the fluxes should be 
computed.

3.3.1 � The geometric conservation law

We need to make sure that the movement of the mesh is 
not responsible for any artificial alteration of the physical 
phenomena involved, or at least, to make our best from a 
numerical point of view for the mesh movement to intro-
duce an error of the same order as the one introduced by the 
numerical scheme. If System (4) is written for a constant 
state, assuming �ext = 0 , we get, for any arbitrary closed 
volume C = C(t):

As the constant state is a solution of the Euler equations, if 
boundaries transmit the flux towards the outside as it comes, 
we find a purely geometrical relation inherent to the continu-
ous problem. For any arbitrary closed volume C = C(t) of 
boundary �C(t) , Relation (12) is integrated into:

which is usually known as the geometric conservation law 
(GCL). From a geometric point of view, this relation states 
that the algebraic variation of the volume of C between two 
instants equals the algebraic volume swept by its boundary.

The role of the GCL in ALE simulations has been ana-
lyzed in [22]. It has been shown that the GCL is neither a 
necessary nor a sufficient condition to preserve time accu-
racy; however, violating it can lead to numerical oscilla-
tion [46]. In [24] the authors show that compliance with the 
GCL guarantees an accuracy of at least the first order in some 
conditions. Therefore, most would agree that the GCL should 
be enforced at the discrete level for a large majority of cases.

3.3.2 � Discrete GCL enforcement

A new approach to enforcing the discrete GCL was pro-
posed in [46, 57, 58], in which the authors proposed a frame-
work to build ALE high-order temporal schemes that reach 

(12)
d(|C(t)|)

dt
− ∫

�C(t)

(w ⋅ �) ds = 0.

(13)
|C(t + �t)| − |C(t)| = ∫

t+�t

t ∫
�C(t)

(w ⋅ �) dsdt,

with t and t + �t ∈ [0, T],

approximately the design order of accuracy. The originality 
of this approach consists in precisely defining which ALE 
parameters are true degrees of freedom and which are not. In 
contrast to other approaches [35, 38, 48], they consider that 
the times and configurations at which the fluxes are evaluated 
do not constitute a new degree of freedom to be set thanks 
to the ALE scheme. To maintain the design accuracy of the 
fixed-mesh temporal integration, the moment at which the geo-
metric parameters, such as the cells’ interfaces’ normals or the 
upwind/downwind tetrahedra must be computed, is entirely 
determined by the intermediate configurations involved in the 
chosen temporal scheme. The only degree of freedom to be set 
by enforcing the GCL at the discrete level is � . Incidentally, 
it is implicitly stated that w is never involved alone but only 
hidden in the term �‖�‖ which represents the instantaneous 
algebraic volume swept.

In practical terms, the interfaces normal speeds are found 
by simply rewriting the scheme for a constant discrete solution, 
which leads to a small linear system that is easily invertible 
by hand. This procedure is detailed in the next section for one 
Runge–Kutta scheme. Any fixed-mesh explicit RK scheme 
can be extended to the case of moving meshes thanks to this 
methodology, and the resulting RK scheme is naturally DGCL. 
Even if this has not been proven theoretically, the expected 
temporal order of convergence has also been observed numeri-
cally for several schemes designed using this method [57].

3.3.3 � RK schemes

Runge–Kutta (RK) methods are famous multi-stage methods 
to integrate ODEs. In the numerical solution of hyperbolic 
PDEs, notably the Euler equations, the favorite schemes 
among the huge family of Runge–Kutta schemes are those 
satisfying the strong stability preserving (SSP) property [53, 
55]. In what follows, we denote by SSPRK(S,P) the S-stage 
RK scheme of order P. We adopt the following notations:

with

Superscript notation Xs indicates that the quantity consid-
ered is the X obtained at stage s of the Runge–Kutta process. 

(14)� s
i
=

ni∑
j=1

�(�s
i
,�s

j
, �s

ij
, �s

ij
),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ni the number of edges in the ball of vertex Pi

�s
ij

the outward ��� − ���������� normal to the

portion of the interface of cell Cs
i
around

edge eij
�s
ij
normal speed of the interface around edge eij of

cellCs
i
.
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For instance, Cs
i
 is the cell associated with vertex Pi when 

the mesh has been moved to its sth Runge–Kutta configura-
tion. Coefficients 

(
cs
)
0≤s≤S indicate the relative position in 

time of the current Runge–Kutta configuration: 
ts = tn + cs � with � = tn+1 − tn . Finally, we denote by As

ij
 

the volume swept by the interface around edge eij of cell Ci 
between the initial Runge–Kutta configuration and the sth 
configuration.

3.3.4 � Application to the SSPRK(4,3) scheme

This approach was used, for example, to build the third-
order 4-step Runge–Kutta scheme [51], whose Butcher and 
Shu–Osher representations are given in Table 1.

For this scheme to be DGCL, it must preserve a constant 
solution �i = �0 , as stated in Sect. 3.3.1. In this specific case, 
our conservative variable is �i = |Ci|�0 and the purely physi-
cal fluxes vanish, leading to � s

i
= −�0

∑ni
j=1

�s
ij
�s
ij
 . Therefore, 

the scheme reads:

where As
ij
 is the volume swept by the interface around edge 

eij of cell Ci between the initial and the sth Runge–Kutta con-
figuration. A natural necessary condition for the above rela-
tions to be satisfied is to have, for each interface around edge 
eij of each finite volume cell Ci:

|C0
i
| =|Cn

i
|

|C1
i
| − |C0

i
| =

ni∑
j=1

A1
ij
=

�

2

ni∑
j=1

�0
ij
�0
ij

|C2
i
| − |C0

i
| =

ni∑
j=1

A2
ij
=

�

2

ni∑
j=1

(
�0
ij
�0
ij
+ �1

ij
�1
ij

)

|C3
i
| − |C0

i
| =

ni∑
j=1

A3
ij
=

�

6

ni∑
j=1

(
�0
ij
�0
ij
+ �1

ij
�1
ij
+ �2

ij
�2
ij

)

|C4
i
| − |C0

i
| =

ni∑
j=1

A4
ij
=

�

2

ni∑
j=1

(
1

3
�0
ij
�0
ij
+

1

3
�1
ij
�1
ij
+

1

3
�2
ij
�2
ij

+ �3
ij
�3
ij

)
,

Therefore, the normal speed of the interface around edge 
eij of cell Ci must be updated in the Runge–Kutta process 
as follows :

and the �s
ij
 and As

ij
 are computed on the mesh once it has been 

moved to the sth Runge–Kutta configuration.

3.3.5 � Practical computation of the volumes swept

The interface of a finite volume cell is made up of several 
triangles, connecting the middle of an edge to the center of 
gravity of a face and the center of gravity of that tetrahedron; 
see Fig. 3. The two triangles of the interface sharing one edge 
within a tetrahedron are coplanar (i.e., the middle of an edge, 
the center of gravity of the two faces neighboring this edge and 
the center of gravity of tetrahedron are coplanar). The union 
of these two triangles is called the facet associated to the edge 
and the tetrahedron.

At configuration ts = t0 + cs � , (with t0 = tn ), the outward 
non-normalized normal �s

ij
 and the volume swept As

ij
 are com-

(15)

⎛
⎜⎜⎜⎜⎝

A1
ij

A2
ij

A3
ij

A4
ij

⎞
⎟⎟⎟⎟⎠
= �

⎛
⎜⎜⎜⎜⎝

1

2
0 0 0

1

2

1

2
0 0

1

6

1

6

1

6
0

1

6

1

6

1

6

1

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�0
ij
�0
ij

�1
ij
�1
ij

�2
ij
�2
ij

�3
ij
�3
ij

⎞
⎟⎟⎟⎟⎠

⇔

⎛⎜⎜⎜⎜⎝

�0
ij
�0
ij

�1
ij
�1
ij

�2
ij
�2
ij

�3
ij
�3
ij

⎞⎟⎟⎟⎟⎠
=

1

�

⎛⎜⎜⎜⎝

2 0 0 0

−2 2 0 0

0 − 2 6 0

0 0 − 2 2

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

A1
ij

A2
ij

A3
ij

A4
ij

⎞⎟⎟⎟⎟⎠
.

(16)

�0
ij
=

2A1
ij

� �0
ij

, �1
ij
=

−2A1
ij
+ 2A2

ij

� �1
ij

, �2
ij
=

−2A2
ij
+ 6A3

ij

� �2
ij

, and

�3
ij
=

−2A3
ij
+ 2A4

ij

� �3
ij

,

Table 1   Butcher and Shu–
Osher representations of the 
third-order 4-step Runge–Kutta 
scheme (SSPRK(4,3))

Butcher representation Shu–Osher representation ts = tn + cs �

�i
0 = �i

n �i
0 = �i

n c
0
= 0, t0 = tn

�i
1 = �i

0 +
�

2
�0
i

�i
1 = �i

0 +
�

2
�0
i c

1
=

1

2
, t1 = tn +

1

2
�

�i
2 = �i

0 +
�

2

(
�0
i
+ �1

i

)
�i

2 = �i
1 +

�

2
�1
i

c
2
= 1, t2 = tn+1

�i
3 = �i

0 +
�

6

(
�0
i
+ �1

i
+ �2

i

)
�i

3 =
2

3
�i

0 +
1

3
�i

2 +
�

6
�2
i

c
3
=

1

2
, t3 = tn +

1

2
�

�i
4 = �i

0 +
�

2

(
1

3
�0
i
+

1

3
�1
i
+

1

3
�2
i
+ �3

i

)
�i

4 = �i
3 +

�

2
�3
i

c
4
= 1, t4 = tn+1
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puted as described in [49]. As the cell interface is made up of 
several facets, the total swept volume is the sum of the volumes 
swept by each facet.

Let us assume that the facet considered is associated with 
edge �ij = PiPj and belongs to tetrahedron K = (P0,P1,P2,P3) . 
In what follows, i ≠ j ≠ l ≠ m ∈ [[0, 3]] , G denotes the center 
of gravity of tetrahedron K, Mm denotes the gravity center of 
face Fm = (Pi,Pj,Pl) of tetrahedron K and Ml the center of 
gravity of face Fl = (Pi,Pj,Pm) . The outward non-normalized 
normal of the facet is given by:

where

(17)
�̃s
ij,K

=
1

4
����

�
∧ ����

�
+

1

4
����

�
∧ ����

�

+
1

2
����

�
∧ ����

�
+

1

2
����

�
∧ ����

�
,

����
�
=

1

12

(
P0
i
+ P0

j
− 3P0

m
+ P0

l

)
,

����
�
=

1

12

(
Ps
i
+ Ps

j
− 3Ps

m
+ Ps

l

)
,

����
�
=

1

12

(
P0
i
+ P0

j
+ P0

m
− 3P0

l

)
and

����
�
=

1

12

(
Ps
i
+ Ps

j
+ Ps

m
− 3Ps

l

)
.

The volume swept by the facet is:

with the mean velocity written as:

with

Finally, the total volume swept by the interface around edge 
eij of cell Ci is obtained by summing over the shell of the 
edge, i.e., all the tetrahedra sharing the edge:

It is important to understand that normals �̃s
ij,K

 are pseudo-

normals which are used only to compute the volumes swept 
by the facets. They must not be mistaken for normals to 
facets taken at ts , �s

ij,K
 , which are used for the computation 

of ALE fluxes.

3.3.6 � Volumes swept by boundary interfaces

The pseudo-normals and swept volumes of boundary faces 
are computed in a similar way. Let K = (P0 ,P1 ,P2) be 
a boundary triangle, as in Fig. 3. Let M0 , M1 and M2 be 
the middles of the edges and G the center of gravity of K. 
The triangle is made up of three quadrangular finite vol-
ume interfaces: (P0 ,M2 ,G ,M1) associated with cell C0 , 
(P1 ,M0 ,G ,M2) with C1 and (P2 ,M1 ,G ,M0) with C2 . Each 
boundary interface Ii is made of two sub-triangles, noted Tij 
and Tik with j, k ≠ i.

The volume swept by interface Ii between the initial and 
current Runge–Kutta configurations is the sum of the vol-
umes swept by its two sub-triangles:

where ws
Gij

 is the velocity of the center of gravity Gij of tri-

angle Tij and �̃s
ij
 is the pseudo-normal associated with Tij , 

computed between the initial and current Runge–Kutta 
configurations.

The six triangles Tij are coplanar, so their pseudo-normals 
have the same direction. Moreover, as median cells are used, 
their pseudo-normals also have the same norm, which is 
equal to one sixth of the norm of the pseudo-normal to tri-
angle K. This common pseudo-normal is therefore equal to:

(18)As
ij,K

= cs 𝜏 (wG)
s
ij,K

⋅ �̃s
ij,K

,

(wG)
s
ij,K

=
1

36 cs �

(
13ws

i
+ 13ws

j
+ 5ws

m
+ 5ws

l

)

w
s
�
= Ps

�
− P0

�
.

(19)As
ij
=

∑
K∈Shell(i,j)

As
ij,K

.

(20)As
i,K

= As
Tij
+ As

Tik
= cs𝜏 w

s
Gij

⋅ �̃s
ij
+ cs𝜏 w

s
Gik

⋅ �̃s
ik
,

P0

P2

P1

I01

I02

I03

M1
M2

M3

G

P0

P1

P2

G

M1

M2

M0

G02

G01
G10

G12

G20
G21

boundary triangle K

T02

T01
T10

T12

T21T20

I2

I0

I1

Fig. 3   Interface of a finite volume cell made up of facets (top) and 
boundary interface (bottom)
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thus

where

Finally, the total volume swept by the boundary interface is:

3.3.7 � MUSCL approach and RK schemes

Regarding spatial accuracy, we have seen that the order of 
accuracy can be enhanced using the MUSCL-type recon-
struction with upwinding. However, in the ALE context, one 
must determine how and when upwind/downwind elements 
should be evaluated to compute upwind/downwind gradi-
ents which are necessary for the �-schemes. This question 
is neither answered in the literature and generally approxi-
mations are carried out. For instance, some papers propose 
to use upwind and downwind elements at tn for the whole 
Runge–Kutta process. However, this choice should be con-
sistent with the considered time integration scheme. Fol-
lowing the framework of [57], it is clear that preserving the 
expected order of accuracy in time imposes that the upwind/
downwind elements and the gradients are computed on the 
current Runge–Kutta configuration, i.e., on the mesh at ts . 
Therefore, similarly to geometric parameters, the upwind/
downwind elements and the gradients should be re-evaluated 
at each step of the Runge–Kutta stage.

3.3.8 � Computation of the time step

The maximal allowable time step for the numerical scheme 
is:
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(24)�(Pi) =
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ci + ‖�i − wi‖ ,

where h(Pi) is the smallest height in the ball of vertex Pi , 
ci is the speed of sound, �i is the Eulerian speed (the speed 
of the fluid, computed by the solver) and wi is the speed 
of the mesh vertex. The global time step is then given by 
� = CFL minPi

(�(Pi)).

3.3.9 � Handling the swaps

An ALE formulation of the swap operator, satisfying the 
DGCL, was proposed in 2D in [51], but its extension to 3D 
is very delicate because it requires to handle 4D geometry, 
and it has not been carried out yet. Instead of considering 
an ALE scheme for the swap operator, our choice in this 
work is to perform the swaps between two solver itera-
tions, i.e., at a fixed time tn . This consequently means that 
during the swap phase, the mesh vertices do not move, and 
thus the swaps do not impact the ALE parameters � and 
w , unlike [51] where the swaps are performed during the 
solver iteration, i.e., between tn and tn+1 . After each swap, 
the solution should be updated on the new configuration. 
Two interpolation methods are considered here.

The first, and simplest, one is to perform a linear inter-
polation to recover the solution. As only the connectivity 
changes and not the vertices positions, the solution at the 
vertices does not change, i.e., nothing has to be done. This 
interpolation is DGCL compliant, since the constant state is 
preserved (in fact, any linear state is preserved), but it does 
not conserve the mass ( i.e., it does not conserve the inte-
gral of the conservative variable) which is problematic for 
conservative equations when discontinuities are involved 
in the flow.

The second method is the P1-exact conservative inter-
polation following [2, 5]. It is a simplified version of the 
latter because the cavity of the swap configuration is fixed. 
The mass conservation property of the interpolation opera-
tor is achieved by element–element intersections. The idea 
is to find, for each element of the new configuration, its 
geometric intersection with all the elements of the previ-
ous configuration it overlaps and to mesh this geomet-
ric intersection with simplices. We are then able to use 
a Gauss quadrature formula to exactly compute the mass 
which has been locally transferred. High-order accuracy is 
obtained through the reconstruction of the gradient of the 
solution from the discrete data and the use of some Taylor 
formulae. Unfortunately, this high-order interpolation can 
lead to a loss of monotonicity. The maximum principle is 
recovered by correcting the interpolated solution in a con-
servative manner, using a limiter strategy very similar to 
the one used for finite volume solvers. Finally, the solution 
values at vertices are reconstructed from this piecewise 
linear by element discontinuous representation of the solu-
tion. The algorithm is summarized in Algorithm 2, where 
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mK stands for the integral of any conservative quantities 
(density, momentum and energy) on the considered ele-
ment. This method is also compliant with the DGCL.

Moreover, after each swap, the data of the finite volume 
cells (volume and interface normals) are updated, together 
with the topology of the mesh (edges and tetrahedra). 
This requires to have a flow solver with dynamic data. In 
Sects. 6.1 and 6.2, we will quantify the error due to the use 
of swaps in numerical simulations.

4 � FSI coupling

The moving boundaries can have an imposed motion, or be 
driven by fluid–structure interaction. A simple solid mechan-
ics solver is coupled to the flow solver described previously. 
The chosen approach is the 6-DOF (6 Degrees of Freedom) 
approach for rigid bodies.

4.1 � Movement of the geometries

In this work, the bodies are assumed to be rigid, of con-
stant mass and homogeneous, i.e., their mass is uniformly 
distributed in their volume. The bodies we consider will 
never break into different parts. Each rigid body B is fully 
described by:

Physical quantities Its boundary �B and its associated 
inward normal � , its mass m assumed to be constant, its 
d × d matrix of inertia G computed at G which is sym-
metric and depends only on the shape and physical nature 
of the solid object.2
Kinematic quantities The position of its center of grav-
ity �� = (x(t), y(t), z(t)) , its angular displacement vector 
� = �(t) and its angular speed vector d�∕dt.

�ext denotes the resultant vector of the external forces 
applied on B, �G

(
�ext

)
 the kinetic moment of the external 

forces applied on B computed at G and � the gravity vector. 
We assume that the bodies are only submitted to forces of 
gravity and fluid pressure. The equations for solid dynamics 
in an inertial frame then read:

4.2 � Discretization

The equation governing the position of the center of gravity 
of the body is easy to solve since it is linear. Its discretization 
is straightforward. However, the discretization of the second 
equation, which controls the orientation of the body, is more 
delicate. Since the matrix of inertia G depends on � , it is a 
non-linear second-order ODE. The chosen discretization is 
extensively detailed in [50] and is based on rewriting of the 
equations in the frame of the moving body.

4.3 � Explicit coupling

As the geometry must be moved in accordance with the fluid 
computation, the same time integration scheme has been 
taken to integrate the fluid and the solid equations. There-
fore, time-advancing of the rigid bodies ODE System is per-
formed using the same RKSSP scheme as the one used to 
advance the fluid numerical solution. The coupling is loose 
and explicit as the external forces and moments acting on 
rigid objects are computed on the current configuration.

5 � Implementation and parallelization

Most parts of the code are parallelized with p-threads using 
an automatic p-thread parallelization library [45] coupled 
with a space filling curve renumbering strategy [4]. The 
Hilbert space filling curve based renumbering strategy 
is used to map mesh geometric entities, such as vertices, 
edges, triangles and tetrahedra, into a one-dimensional 
interval. In numerical applications, it can be viewed as a 
mapping from the computational domain onto the memory 
of a computer. The local property of the Hilbert space fill-
ing curve implies that entities which are neighbors on the 
memory 1D interval are also neighbors in the computa-
tional domain. Therefore, such a renumbering strategy has 
a significant impact on the efficiency of a code. We can 
state the following benefits: it reduces the number of cache 
misses during indirect addressing loops, and it reduces 

(25)
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2  The moment of inertia relative to an axis of direction � pass-
ing through G where � is an arbitrary unit vector is given by: 
J(G�) = �T

G
�.
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cache-line overwrites during indirect addressing loops, 
which is fundamental for shared memory parallelism.

The automatic parallelization library cuts the data 
into small chunks that are compact in terms of memory 
(because of the renumbering), then uses a dynamic sched-
uler to allocate the chunks to the threads to limit concur-
rent memory accesses. In the case of a loop performing 
the same operation on each entry of a table, the loop is 
split into many sub-loops. Each sub-loop will perform 
the same operation (symmetric parallelism) on equally-
sized portions of the main table and will be concurrently 
executed. It is the scheduler’s job to make sure that two 
threads do not write on the same memory location simul-
taneously. When indirect memory accesses occur in loops, 
memory write conflicts can still arise. To deal with this 
issue, an asynchronous parallelization is considered 
rather than of a classic gather/scatter technique, i.e., each 
thread writes in its own working array and then the data 
are merged.

Our moving mesh strategy performs frequent mesh opti-
mizations that impact the ALE speeds of the vertices, so it 
is much more efficient to have the whole moving mesh part 
included in the solver code. To handle the moving mesh, 
semi-dynamic data structures are necessary. Since we do 
not do vertex insertion or deletion, only some of the data 
structures have to be dynamic (edge and tetrahedra lists), 
whereas some remain static (the list of vertices, as well as 
all the data associated to vertices). In the case of dynamic 
data, the appropriate organization of the memory which 
reduces concurrent accesses can be lost, and thus imposes 
re-sorting the data according to the Hilbert numbering 
from time to time in order to maintain a good speedup.

Some parts of the code have not yet been parallelized, in 
particular the elasticity solution and the mesh optimization 
step. The optimizations are difficult to parallelize because 
they are greatly dependent on the order in which they are 
performed. Although changing this order leads to the same 
overall result, it is not exactly the same, and thus, the dynamic 
handling of the library makes each run non reproducible. To 
have a parallel and reproducible mesh optimization step, the 
operators should be rewritten with different algorithms to 
make them independent of the process order. Such algorithms 
are generally less efficient in terms of CPU time.

6 � Verification of the solver

In the following section, we present academic test cases 
in order to assess the behavior of the different parts of the 
solver: the fluid ALE solver, the rigid body dynamic solver 
and the FSI coupling.

6.1 � Static vortex in a rotating mesh

The first test case is used to validate the ALE solver, and 
study the impact of the moving mesh on the accuracy of 
the solution. We study the conservation of a static vortex 
(similar to [34]) on a rotating mesh.

This case is an extension of a 2D case: we consider 
an extruded cylinder, and the initial solution is constant 
along the z axis. The domain is a cylinder of radius 5 and 
of height 1. The initial solution is defined as follows. Let 
r0 = 1 be a characteristic radius and the reference state be:

Let us define the following quantities:

For a point of cylindrical coordinates (r, �, z) , the enthalpy 
and speed of the vortex are:

And finally the initial solution is:

This initial configuration results in a cylindrical vortex 
rotating around the z axis, that remains in a constant state 
over time (density, pressure and speed are preserved). To 
avoid errors due to boundary conditions, the exact solution 
is enforced for every vertex farther than 90% of the cylinder 
radius (typically just a few layers of elements). The mesh 
is rotated rigidly around the z axis. Several rotation speeds 
were considered, all of which led to the same conclusions. 
Here, we only present the results for an angular speed of 
0.34° per time unit, which corresponds approximately to the 
speed of the vortex at a radius r = 5 . We address both space 
and time convergence.

6.1.1 � Space convergence

For the space convergence study, we consider a set of uni-
form meshes of sizes varying from 10,000 vertices to 1.8 
million vertices; see Table 2. The simulation is run until 

(26)
�∞ = 1, ux∞ = 0, uy∞ = 0, uz∞ = 0, p∞ = 1 and � = 1.4.

D∞ =
1

2

1

(2�)2

�∞

p∞
,=

1

8�2
B∞ = 2r2

0
−

� − 1

�
D∞,

E∞ = (2r2
0
)2 − B2

∞
.

Hvor =
�

� − 1

p∞

�∞
+

1

2
(u2

x∞
+ u2

y∞
+ u2

z∞
), vvor =

1

2�

r

r2 + 1
.

(27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ux0 = ux∞ − vvor sin � = −vvor sin �

uy0 = uy∞ + vvor cos � = vvor cos �

uz0 = 0

p0 = p∞ exp
�

2D∞√
E∞

atan
�

2r2+B∞√
E∞

�
−

�

2

�

�0 =
�

�−1
p0

Hvor−
1

2
vvor

.



Engineering with Computers	

1 3

time t = 540 , which corresponds to half a revolution of 
the cylinder. Since an exact solution is known, it is easy 
to compute an error with respect to this exact solution 
on each mesh. Two cases are compared: in one case the 
mesh is fixed, and in the other case the mesh is rotated 
as described previously. Since no mesh optimizations are 
performed, it allows us to make sure that the extra ALE 
terms are well computed. The results are shown in Fig. 4. 
On the left graph, we plot the error varying with time for 
the different meshes, fixed (red) and rotating (blue). We 
can see that, as expected, the error diminishes as the size 
of the mesh grows, but more significantly the curves of the 
error for the moving and static meshes are almost super-
imposed. This confirms the accuracy of the ALE scheme. 
To study the spatial order of convergence, the error is plot-
ted with respect to the mesh size at different times on the 
right-hand graph. We can see that the order of convergence 
reached is slightly greater than 2, which is coherent with 
the space scheme used.

6.1.2 � Time convergence

This study was carried out in 2D for reasons of efficiency. Our 
goal was to study the impact of the Runge–Kutta schemes 
used and the CFL parameter. We consider a disc of radius 5, 
with the same initial solution as previously (Eq. 27) and rotat-
ing with the same speed. Three time discretizations are used: 
a standard first-order explicit scheme (SSPRK(1,1)), a five-
step second-order Runge–Kutta scheme (SSPRK(5,2)) and 
a four-step third-order Runge–Kutta scheme (SSPRK(4,3)) 
described in Sect.  3.3.4. Four CFL numbers are set for 
each case: CFLmax , 3∕4 × CFLmax , 1∕2 × CFLmax and 
1∕10 × CFLmax . CFLmax is, respectively, 1, 4 and 2 for the 
schemes SSPRK(1,1), SSPRK(5,2) and SSPRK(4,3).

The results are gathered in Fig. 5. On the first graph, the 
error over time is plotted for the different temporal schemes 
and CFL numbers, while on the second, we plot the error 
varying with the CFL number at different time steps. On 
both graphs, we can see that the error decreases with the 
order of the Runge–Kutta scheme and with the CFL number. 
Whereas the standard explicit scheme is very sensitive to the 
time step, the error does not vary much for the SSPRK(4,3) 
and SSPRK(5,2). What is interesting to notice is that we 
have to use a CFL number of 0.1 CFLmax for a standard 
explicit scheme to reach the same level of accuracy as the 
SSPRK(4,3) scheme with a CFL number at its maximum 

or the the SSPRK(5,2) scheme with a CFL number of 0.75 
times its maximum. To reach a non-dimensional time equal 
to 3 with the standard explicit scheme with a CFL of 0.1, 
30 time steps are required, whereas only 5 are required for 
the SSPRK(5,2) scheme with a CFL of 3, and 6 for the 
SSPRK(4,3) with a CFL of 2. Thus we can go 6 times faster 
with the high-order Runge–Kutta schemes and still obtain 
the same solution accuracy, which is obviously interesting.

Influence of swaps
It is important to study the impact of edge/face swaps on 

the solution accuracy in 3D. However, it is difficult to set 
up a meaningful test case with swaps. The number of swaps 
should be constant (in proportion to the size of the mesh), 

Table 2   Test case of the static 
vortex without swaps. Sizes of 
the meshes used and number of 
solver time steps performed

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7 Mesh 8 Mesh 9

# vertices ( ×103) 12 44 138 185 256 371 585 965 1825
# tetrahedra ( ×103) 48 211 691 942 1330 1965 3122 5287 10,218
# time steps 4673 7280 15,608 14,321 14,321 17,275 29,996 32,245 44,680
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Fig. 4   Test case of the static vortex (3D). Error curves comparing the 
simulation on a fixed mesh (red) and on a moving mesh (blue) for 
several mesh sizes. Top, the evolution of the error over time, bottom 
convergence curves with respect to the size of the mesh. (Color figure 
online)
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and they should also be uniformly distributed in both time 
and space.

On all the simulations run with the connectivity-change 
moving mesh strategy, we noticed that, on average, less than 
one swap per 10,000 tetrahedra and per time step is per-
formed. To fit this observation, in this example, we swap all 
the bad elements to preserve the mesh quality every 15 solver 
time steps. Then, if not enough swaps were performed, we 
randomly swap elements to reach a number of 1 swap per 
666 tetrahedra. Not all random swaps are actually performed, 

because some of them affect the quality of the mesh too drasti-
cally, so the number of swaps is not perfectly controlled but 
this method allows us to have an average number of swaps 
close to one per 10,000 tetrahedra and per time step for all the 
meshes, evenly distributed in the domain, as stated in Table 3.

We again consider 3D meshes, rotating with the same speed 
of 0.34° per time unit, and the simulations are run up to 270s. 
In the absence of discontinuity in the solution, a linear interpo-
lation is performed after the swaps. The results are gathered in 
Fig. 6. The error is slightly higher with swaps (in green) than 
without (in blue and red), however the error curves remain 
very close to those without swaps. The discrepancy can mainly 
be explained by the non conservative characteristic of the lin-
ear interpolation. Even without a conservative formulation, 
the error introduced in this example is not so large, and the 
same second-order convergence rate is observed. In the next 
example, we analyze the impact of a conservative formulation 
in the case of discontinuities in the solution.

To sum up, this static vortex test case allowed us to vali-
date our ALE solver. We asymptotically reach an order of 
convergence of 2 for the spatial error, and we made sure 
there was no additional error introduced by the ALE terms. 
As regards temporal convergence, the importance of a high-
order Runge–Kutta scheme was established. Finally, we 
showed that edge/face swapping—artificially created in this 
case, but mandatory to preserve the quality of the mesh (and 
thus the accuracy of the solution) when complex geometric 
displacements are involved—only creates a small error, even 
if used without a specific conservative treatment.

6.2 � Sod’s shock tube with a rotating circle

To show the impact of the choice of the interpolation when 
swaps are performed in the presence of discontinuities, we 
consider the well-known Sod’s shock tube problem [54]. The 
tube domain size is [0, 1] × [0, 0.2] , and initially, the tube is 
filled with two fluids at rest (left part is x ≤ 0.5 and right part 
is x > 0.5 ) verifying:

�left = 1, �left = 0, pleft = 1

and

�right = 0.125, �right = 0, pright = 0.1.
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Fig. 5   Test case of the static vortex (2D). Error curves comparing 
several temporal schemes: standard explicit Euler scheme (blue), 
SSPRK(4,3) (green), SSPRK(5,2) (red). Top, evolution of the error 
over time. Bottom, error at a fixed time varying with the CFL num-
ber. (Color figure online)

Table 3   Test case of the static vortex with swaps. Number of swaps for each mesh. On the last line, the number of swaps is close to one swap per 
time step and per 10,000 tetrahedra for all the meshes

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Mesh 7 Mesh 8 Mesh 9

# tetrahedra ( ×103) 48 211 691 942 1330 1965 3122 5287 10,218
# time steps 2338 3647 7788 7493 7367 8948 12,040 16,085 21,449
# swaps ( ×103) 21 114 763 996 1337 2319 5204 10,838 26,719
# swaps/time step/tet ( ×10−4) 1.80 1.49 1.42 1.41 1.36 1.32 1.38 1.27 1.22
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The solution is computed until non-dimensioned time 
t = 0.25 , and a shock wave and a contact discontinuity 
propagate on the right-hand side of the tube while a rar-
efaction wave propagates on the left-hand side. To analyze 
the ALE scheme and the impact of the swaps, we define a 
circular region of center (0.75, 0.1) and radius 0.05 which 
performs two full rotations within the simulation time frame; 
see Fig. 7. As the circular region is rotating, the mesh is 
sheared and swaps are performed around the circular region 

to maintain a good mesh quality. As the shock wave and the 
contact discontinuity move through the rotating region dur-
ing the simulation time frame, we can analyze the impact of 
the interpolation stage when swaps are performed. For com-
parison, we also run the simulation on the same fixed mesh. 
Figure 8 shows the results on the fixed mesh (top), and on 
the moving mesh using the linear interpolation when swaps 
are performed (middle) and using the P1-exact conserva-
tive interpolation (bottom). Extraction of the density profile 
along the line y = 0.0483256 is given in Fig. 9.

We can observe that some defects in the solution appear 
in the contact discontinuity when the linear interpolation is 
considered due to the rotation of a part of the domain. These 
defects disappear when the conservative interpolation is used. 
The defects are pointed out on the density profile when we 
zoom on the contact discontinuity; see Fig. 9 (right). But, they 
remain minor when we observe the overall profile.

6.3 � Piston

The third validation test case is an FSI piston case from [37]. 
It is originally a 1D problem, which is extended to 3D. As 
shown in Fig. 10, we consider a gas contained in a 3D cylindri-
cal chamber, closed at one end by a wall, and at the other end 
by a moving piston of mass mp and of cross-section Ap . 
Besides the forces of pressure, the piston is submitted to a 
restoring force modeled by a spring of rigidity kp . A natural 

frequency of the piston can be defined by fp =
1

2�

√
kp

mp

 . Let 

L0 be the length of the chamber at rest, and u(t) be the displace-
ment of the piston with respect to the position at rest. The gas 
is initially at rest, and the piston is held in position u0 . We 
consider that all the variables are uniform on each cross-sec-
tion of the cylinder (1D assumption).

It is shown in [37] that the piston is submitted to a resultant 
force applied to its center of gravity:

with p(t) being the pressure on the piston. No effects of grav-
ity are taken into account.

In practice, the domain at t = 0 is a rectangular box 
of dimensions [−1, 0.2] × [−0.5, 0.5] × [−0.5, 0.5] . The 

(28)Fp = −kp u(t) + Ap(p(t) − p(0)),
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Fig. 6   Test case of the static vortex (3D). Error curves comparing the 
simulation on a fixed mesh (red), on a moving mesh without swaps 
(blue) and on a moving mesh with swaps (green) for several mesh 
sizes. Top, the evolution of the error over time, bottom, convergence 
curves with respect to the size of the mesh. (Color figure online)

Fig. 7   Sod’s shock tube problem with a rotating region. Domain geometry where the green region is fixed and the circular red region is rotating 
(performing two full rotations during the simulation). (Color figure online)
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vertical face at x = 0.2 is mobile, and all the other faces are 
fixed, which corresponds to l0 = 1 and u0 = 0.2 . The piston 
rigidity is set to kp = 107 Nm−1 , and a variety of piston 
masses (and thus frequencies) are considered: mp = 4 kg, 
10 kg, 100 kg and 1000 kg, corresponding, respectively, 
to frequencies fp = 252 Hz, 159 Hz, 50 Hz and 16 Hz. 

The other parameters are: �0 = 1.1615 kgm−3 , p0 = 105 Pa, 
�0 = 0 m s−1.3 Slipping conditions are imposed on all the 
boundary faces (fixed and mobile). From a moving mesh 

Fig. 8   Sod’s shock tube 
problem with a rotating region. 
From top to bottom, density 
iso-values and iso-lines at 
non-dimensioned time t = 0.25 
for the fixed mesh, the moving 
mesh with linear interpolation, 
and the moving mesh with the 
P1-exact conservative interpola-
tion

Fig. 9   Sod’s shock tube problem with a rotating region. Extraction of the density profile along the line y = 0.0483256 at non-dimensioned time 
t = 0.25 . Bottom, zoom on the contact discontinuity region

3  For more details on the description of the test in  [37], see the 
source code referred in the paper.
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point of view, it is essential to allow tangential movement 
of the vertices on the moving faces of the box.

The quantities of interest are the displacement and 
the pressure of the piston. For the pressure, we consider 
the pressure at its center of gravity. These two quantities 
are plotted in Fig. 11. Regarding the piston movement, 
it is periodic, as expected, with a period Tp = 1∕fp (see 
Table 4), the amplitude of the oscillations being damped 
due to FSI effects. These curves are similar to the results 
of [37] for the cases mp = 10 kg, 100 kg and 1000 kg. To 
highlight the FSI effect, we added a case with a smaller 
mass mp = 4 kg, where the reduction of the amplitude of 
the oscillations is even clearer. As concerns the piston 
pressure, the results also correspond to [37]. We ran the 
case with several mesh sizes (from 200,000 to one million 
vertices) and several temporal schemes, and all results are 
consistent. The pressure fields at a time around 2/5 of the 
final time are shown in Fig. 12 for the four masses con-
sidered. We can see that the 1D structure of the solution 
is well preserved.

7 � Some application examples

Finally, we analyze the behavior of our strategy on two 
more complex, industrial-like, examples of simulations 
in three dimensions. These examples are challenging due 
both to the size of the meshes considered, and to the large 
displacement of the geometries. Note that a linear inter-
polation was used after edge/face swaps as no shocks are 
present in the flow-field, and it does not alter the conclu-
sions of these examples.

7.1 � Two F117 aircraft crossing flight paths

The first example models two notional F117 aircraft 
with crossing flight paths. This problem illustrates well 
the efficiency of the connectivity-change moving mesh 
algorithm in handling large displacements of complex 
geometries without global remeshing. When both air-
craft cross each other, the mesh deformation encounters 
a large shearing due to the opposite flight directions. The 
connectivity-change mesh deformation algorithm easily 
handles this complex displacement thanks to the mesh 
local reconnection. Therefore, the mesh quality remains 
very good during the whole displacement, without any 
remeshing step.

As concerns the fluid simulation, the aircraft are moved 
with an imposed motion of translation and rotation at a 
speed of Mach 0.4, in an initially inert uniform fluid: at 
t = 0 the speed of the air is null everywhere. Transmitting 
boundary conditions are used on the sides of the surround-
ing box, while slipping conditions are imposed on the two 
F117 bodies. After a short phase of initialization, the flow 
is established when the two F117s pass each other, and the 
density fields around the aircraft and in their wake interact. 
Acoustic waves are created in front of the F117s due to 
the instantaneous setting in motion of the aircraft. This is 
not realistic, but our aim was to validate our moving mesh 
approach rather than run a physically realistic simulation. 
In Fig. 13, a zoom on the geometry of the two aircraft is 
shown. In Fig. 14, we show both the moving mesh aspect 
of the simulation and the flow solution at different time 
steps.

The mesh is composed of 585,000 vertices and (ini-
tially) 3.5 million tetrahedra. The whole simulation 
requires 22 elasticity solutions and 1600 optimization 
steps for a total of 2,500,000 swaps. The final mesh aver-
age quality of 1.4 is excellent and we notice that 99.8% 
of the elements have a quality smaller than 2 and only 52 
elements have a quality higher than 5.

This simulation was run in a reasonable time: 18 h 
were necessary to do 39,000 time steps on a machine with 
20 hyperthreaded i7 cores at 2.5 GHz. Very few elasticity 
solutions are requires compared to the number of solver 
time steps, and the total time required for the solution 
of the elasticity problems is only 25 min, which repre-
sents only 2.3% of the total time. The good quality of the 
mesh ensures an acceptable solution accuracy through-
out the simulation. The optimization steps (swapping 
and smoothing) only take 25 min. As for the impact of 
the swaps, it is difficult to evaluate, since the simulation 
cannot be run without them. One can notice that on aver-
age, only 66 swaps per solver time step were performed, 

Gas Ap

mp, kp

x

0 u(t)
L0

Fig. 10   Piston test case. 2D representation of the problem

Table 4   Piston test case. Natural frequencies and periods for the dif-
ferent masses used

mp (kg) 4 10 100 1000
fp (Hz) 252 159 50 16
Tp (s) 0.004 0.00628 0.0199 0.0628
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Fig. 11   Piston test case. Dis-
placement (right) and piston 
pressure (left)
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which is less than 0.0002% of the number of elements of 
the mesh, and so is likely to have little influence on the 
solution.

7.2 � Ejected cabin door

The last example is the FSI simulation of the ejection of 
the door of an over-pressurized aircraft cabin. This test 
case has been proposed by aircraft designers, and the aim 
is to evaluate when the door hinge will yield under cabin 

pressure. Generally, such experiments are done in a hangar 
and numerical simulations must be able to predict if the 
door will impact the observation area.

From a purely moving mesh point of view, the difficulty 
is that the geometry is anisotropic and rolls over the ele-
ments while progressing inside a uniform mesh composed of 
965,000 vertices. Another difficulty lies at the beginning of 
the movement when the door is ejected from its frame. The 
gap between the door and the frame is very small, and the 
mesh is sheared in the interstice; see Fig. 15. However, no 
remeshing is needed. The connectivity-change moving mesh 
strategy is able to get rid of these skewed elements quite 
rapidly to finally achieve an excellent quality throughout the 
door displacement.

From the FSI point of view, we present a simplified 
version of the case—and thus probably not very repre-
sentative of the actual physics involved. However, we 
make sure that the solution is physically coherent with 
the simplified initial conditions. At time t = 0 , the vol-
ume is divided into two parts: outside and inside the 
cabin; see Fig. 15. The inside of the cabin and the outside 
are not insulated, so the pressurized air leaks out of the 
cabin. The small volume surrounding the door is consid-
ered initially as being outside the cabin. The outside of 
the cabin is initialized to classic atmospheric values at 
10,000 m ( � = 0.44 kgm−3, � = (0, 0, 0) ms−1, p = 20 kPa). 
At this altitude, the air of the cabin should be 
pressur ized to simulate an altitude of 2500  m 
( � = 0.96 kgm−3, � = (0, 0, 0) ms−1, p = 75 kPa). To sim-
ulate a blast, those values are multiplied by 10 inside the 
cabin ( � = 9.6 kgm−3, � = (0, 0, 0) ms−1, p = 750 kPa). The 
mass of the door is set to 100 kg.

Snapshots of the solution at different time steps are 
shown in Fig. 16. We can see features similar to mach dia-
monds at the rear of the door, due to the high speed of the 
door. As concerns the door movement, the door is blown 
away from the cabin as expected. However, it acquires a 
slow rotation movement. For the time frame considered 
( Tend = 0.2s ), gravity has a negligible impact on the trajec-
tory. The mesh is composed of 965,000 vertices and 5.6 
millions of tetrahedra. Due to the difficult part where the 
door is moving in its frame, the whole simulation requires 
29 elasticity solutions and 540 optimization steps for a total 
of 875,000 swaps. The final mesh average quality of 1.33 
is excellent and we notice that 99.95% of the elements have 
a quality smaller than 2 and only 1 element has a quality 
higher than 5.

The total time of the simulation is 2 h on a machine 
with 20 hyperthreaded i7 cores at 2.5 GHz, for 1122 solver 
time steps, including 43 min of elasticity solution. The 
number of elasticity solutions is still small compared to 
the number of time steps (29 elasticity solutions and 1122 
solver time steps), and elasticity solutions do not account 

Fig. 12   Piston test case. Pressure fields at 2/5 of the final time. 
m = 10 and t = 0.0025 (top), m = 100 and t = 0.0079 (center), 
m = 1000 and t = 0.025 (bottom). The mobile piston is on the right

Fig. 13   Test case of the two F117s. Zoom on the aircraft mesh (top) 
and solution (bottom) just before they pass each other
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for more than a third of the total time. Note that the a 
priori unpredictable trajectory of FSI problems gener-
ally results in a slightly higher number of elasticity steps 
than with analytic imposed motion. The optimization step 
only takes 3 min. Once again, only an average of 0.0001% 
swaps per tetrahedra and solver time step are performed, 
which is not a lot.

8 � Conclusion

A strategy to run complex three-dimensional simulations 
with moving geometries has been presented in this paper. 
This strategy lies first on a robust connectivity-change 
moving mesh algorithm, which couples an elasticity-
like mesh deformation method and mesh optimizations. 

Fig. 14   Test case of the two 
F117s. Snapshots of the moving 
geometries and the mesh (left) 
and density (right)



Engineering with Computers	

1 3

In particular, a reduced number of elasticity solutions 
improves the efficiency of the algorithm, while edge/face 
swapping makes it possible to deal with the strong shear-
ing of the mesh that occurs when the geometries undergo 
large displacement.

To run CFD simulations on such moving meshes, a finite 
volumes flow solver for the compressible Euler equations has 
been extended to the ALE framework. As regards the temporal 
accuracy, the SSPRK schemes considered are based on the 
strict application of the discrete geometric conservation law 

(DGCL), which is supposed to preserve the accuracy of the 
schemes. The displacement of the geometries can be either 
imposed a priori, or governed by a 6-DOF fluid–structure 
coupling.

The goal of the paper was to demonstrate that this strat-
egy allows us to run complex three-dimensional simula-
tions. Challenging examples of such simulations, were 
presented and analyzed, with imposed motion or fully 
FSI. Despite the large displacement of the geometries, no 
global remeshing was necessary to perform the simula-
tions, while preserving a good mesh quality. The unsteady 
solutions of these examples are physically coherent, and 
the total CPU time of the simulations is reasonable. The 
use of high-order Runge–Kutta schemes was shown to help 
reduce the cost of the simulation. Whereas the handling 
of the moving mesh usually takes up a large proportion of 
the simulation total CPU time, our connectivity-change 
moving mesh algorithm only accounts for a small fraction 
of that CPU time, most of the time being spent on actually 
solving the equations.

Some issues still need to be addressed. A thorough 
analysis of the impact of swaps on the solution accuracy 
needs to be carried out. We have shown that a conservative 
interpolation method improves significantly the accuracy of 
the solution in the presence of discontinuities. A compari-
son of this approach with the one described in [51] would 
probably be revealing. The elasticity time step is currently 
constant and fixed a priori for the whole simulation. The 
efficiency of the moving mesh part would be improved if 
this time step could be automatically adapted to the move-
ment of the geometries. Finding such an optimal time step 
is harder than it seems. The case of non rigid bodies also 
has to be addressed: the moving mesh algorithm can handle 
deformable bodies [1, 7], but the FSI coupling would be 
much more complex.

Finally, this entire strategy was devised to fit within 
our metric-based mesh adaptation framework [42]. An 
unsteady version of the adaptation algorithm already 
exists [3]. It was extended to the case of moving meshes in 
3D recently [8], and a goal-oriented version of the process 
is developed.

9 � Software used

The solver described in this paper and used to run all the 
simulations is Wolf. The meshes were generated using 
GHS3d [27] and Feflo.a [43]. The visualization of the 
meshes and solutions was done with Vizir [41].

Fig. 15   Test case of the door ejection. Surface mesh and cut plane 
just after the beginning of the simulation. Note that the gap between 
the door and its frame is very small, and meshed with only one layer 
of elements, which increases the difficulty of the moving mesh prob-
lem
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