2,192 research outputs found

    Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual

    Get PDF
    A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization

    The Cosmic No-Hair Theorem and the Nonlinear Stability of Homogeneous Newtonian Cosmological Models

    Full text link
    The validity of the cosmic no-hair theorem is investigated in the context of Newtonian cosmology with a perfect fluid matter model and a positive cosmological constant. It is shown that if the initial data for an expanding cosmological model of this type is subjected to a small perturbation then the corresponding solution exists globally in the future and the perturbation decays in a way which can be described precisely. It is emphasized that no linearization of the equations or special symmetry assumptions are needed. The result can also be interpreted as a proof of the nonlinear stability of the homogeneous models. In order to prove the theorem we write the general solution as the sum of a homogeneous background and a perturbation. As a by-product of the analysis it is found that there is an invariant sense in which an inhomogeneous model can be regarded as a perturbation of a unique homogeneous model. A method is given for associating uniquely to each Newtonian cosmological model with compact spatial sections a spatially homogeneous model which incorporates its large-scale dynamics. This procedure appears very natural in the Newton-Cartan theory which we take as the starting point for Newtonian cosmology.Comment: 16 pages, MPA-AR-94-

    EUV ionization of pure He nanodroplets: Mass-correlated photoelectron imaging, Penning ionization and electron energy-loss spectra

    Get PDF
    The ionization dynamics of pure He nanodroplets irradiated by EUV radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence (VMI-PEPICO) spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He+, He2+, and He3+. Surprisingly, below the autoionization threshold of He droplets we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we evidence inelastic collisions of photoelectrons with the surrounding He atoms in the droplets

    Penning ionization of doped helium nanodroplets following EUV excitation

    Full text link
    Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n=2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants

    Empirical logic of finite automata: microstatements versus macrostatements

    Full text link
    We compare the two approaches to the empirical logic of automata. The first, called partition logic (logic of microstatements), refers to experiments on individual automata. The second one, the logic of simulation (logic of macrostatements), deals with ensembles of automata.Comment: late

    Program to Optimize Simulated Trajectories (POST). Volume 3: Programmer's manual

    Get PDF
    Information pertinent to the programmer and relating to the program to optimize simulated trajectories (POST) is presented. Topics discussed include: program structure and logic, subroutine listings and flow charts, and internal FORTRAN symbols. The POST core requirements are summarized along with program macrologic

    Optical scalars in spherical spacetimes

    Get PDF
    Consider a spherically symmetric spacelike slice through a spherically symmetric spacetime. One can derive a universal bound for the optical scalars on any such slice. The only requirement is that the matter sources satisfy the dominant energy condition and that the slice be asymptotically flat and regular at the origin. This bound can be used to derive new conditions for the formation of apparent horizons. The bounds hold even when the matter has a distribution on a shell or blows up at the origin so as to give a conical singularity

    Event horizons and apparent horizons in spherically symmetric geometries

    Get PDF
    Spherical configurations that are very massive must be surrounded by apparent horizons. These in turn, when placed outside a collapsing body, must propagate outward with a velocity equal to the velocity of radially outgoing photons. That proves, within the framework of (1+3) formalism and without resorting to the Birkhoff theorem, that apparent horizons coincide with event horizons.Comment: 5 pages, plainte
    • …
    corecore