The validity of the cosmic no-hair theorem is investigated in the context of
Newtonian cosmology with a perfect fluid matter model and a positive
cosmological constant. It is shown that if the initial data for an expanding
cosmological model of this type is subjected to a small perturbation then the
corresponding solution exists globally in the future and the perturbation
decays in a way which can be described precisely. It is emphasized that no
linearization of the equations or special symmetry assumptions are needed. The
result can also be interpreted as a proof of the nonlinear stability of the
homogeneous models. In order to prove the theorem we write the general solution
as the sum of a homogeneous background and a perturbation. As a by-product of
the analysis it is found that there is an invariant sense in which an
inhomogeneous model can be regarded as a perturbation of a unique homogeneous
model. A method is given for associating uniquely to each Newtonian
cosmological model with compact spatial sections a spatially homogeneous model
which incorporates its large-scale dynamics. This procedure appears very
natural in the Newton-Cartan theory which we take as the starting point for
Newtonian cosmology.Comment: 16 pages, MPA-AR-94-