12,519 research outputs found
CAFE: Calar Alto Fiber-fed Echelle spectrograph
We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new
instrument built at the Centro Astronomico Hispano Alem\'an (CAHA). CAFE is a
single fiber, high-resolution (70000) spectrograph, covering the
wavelength range between 3650-9800\AA. It was built on the basis of the common
design for Echelle spectrographs. Its main aim is to measure radial velocities
of stellar objects up to 13-14 mag with a precision as good as a few
tens of . To achieve this goal the design was simplified at maximum,
removing all possible movable components, the central wavelength is fixed, so
the wavelentgth coverage; no filter wheel, one slit and so on, with a
particular care taken in the thermal and mechanical stability. The instrument
is fully operational and publically accessible at the 2.2m telescope of the
Calar Alto Observatory.
In this article we describe (i) the design, summarizing its manufacturing
phase; (ii) characterize the main properties of the instrument; (iii) describe
the reduction pipeline; and (iv) show the results from the first light and
commissioning runs. The preliminar results indicate that the instrument fulfill
the specifications and it can achieve the foreseen goals. In particular, they
show that the instrument is more efficient than anticipated, reaching a
20 for a stellar object as faint as 14.5 mag in 2700s
integration time. The instrument is a wonderful machine for exoplanetary
research (by studying large samples of possible systems cotaining massive
planets), galactic dynamics (high precise radial velocities in moving groups or
stellar associations) or astrochemistry.Comment: 12 pages, 23 figures; Acepted for publishing in A&A, 201
Astrometric search for a planet around VB 10
We observed VB 10 in August and September 2009 using the FORS2 camera of the
VLT with the aim of measuring its astrometric motion and of probing the
presence of the announced planet VB 10b. We used the published STEPS
astrometric positions of VB 10 over a time-span of 9 years, which allowed us to
compare the expected motion of VB 10 due to parallax and proper motion with the
observed motion and to compute precise deviations. The achieved single-epoch
precisions of our observations are about 0.1 mas and the data showed no
significant residual trend, while the presence of the planet should have
induced an apparent proper motion larger than 10 mas/yr. Subtraction of the
predicted orbital motion from the observed data produces a large trend in
position residuals of VB 10. We estimated the probability that this trend is
caused by random noise. Taking all the uncertainties into account and using
Monte-Carlo resampling of the data, we are able to reject the existence of VB
10b with the announced mass of 6.4 M_J with the false alarm probability of only
0.0005. A 3.2 M_J planet is also rejected with a false alarm probability of
0.023.Comment: 6 pages, 6 figures, 2 tables, accepted for publication in A&
A semi-analytical approach to perturbations in mutated hilltop inflation
We study cosmological perturbations and observational aspects for mutated
hilltop model of inflation. Employing mostly analytical treatment, we evaluate
observable parameters during inflation as well as post-inflationary
perturbations. This further leads to exploring observational aspects related to
Cosmic Microwave Background (CMB) radiation. This semi-analytical treatment
reduces complications related to numerical computation to some extent for
studying the different phenomena related to CMB angular power spectrum for
mutated hilltop inflation.Comment: 7 pages, 2 figures. Improved version to appear in IJMP
Determination of the critical current density in the d-wave superconductor YBCO under applied magnetic fields by nodal tunneling
We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic
fields. The films' orientation was such that the CuO2 planes were perpendicular
to the surface with the a and b axis at 450 form the normal. The magnetic field
was applied parallel to the surface and perpendicular to the CuO2 planes. The
Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits
under the effect of surface currents produced by the applied fields. Measuring
this splitting under different field conditions, zero field cooled and field
cooled, reveals that these currents have different origins. By comparing the
field cooled ZBCP splitting to that taken in decreasing fields we deduce a
value of the Bean critical current superfluid velocity, and calculate a Bean
critical current density of up to 3*10^7 A/cm2 at low temperatures. This
tunneling method for the determination of critical currents under magnetic
fields has serious advantages over the conventional one, as it avoids having to
make high current contacts to the sample.Comment: 8 pages, 2 figure
The Adiabatic Instability on Cosmology's Dark Side
We consider theories with a nontrivial coupling between the matter and dark
energy sectors. We describe a small scale instability that can occur in such
models when the coupling is strong compared to gravity, generalizing and
correcting earlier treatments. The instability is characterized by a negative
sound speed squared of an effective coupled dark matter/dark energy fluid. Our
results are general, and applicable to a wide class of coupled models and
provide a powerful, redshift-dependent tool, complementary to other
constraints, with which to rule many of them out. A detailed analysis and
applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur
Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier
The magnetization behavior of mesoscopic superconducting disks can show
hysteretic behavior which we explain by using the Ginzburg-Landau (GL) theory
and properly taking into account the de-magnetization effects due to
geometrical form factors. In large disks the Bean-Livingston surface barrier is
responsible for the hysteresis. While in small disks a volume barrier is
responsible for this hysteresis. It is shown that although the sample
magnetization is diamagnetic (negative), the measured magnetization can be
positive at certain fields as observed experimentally, which is a consequence
of the de-magnetization effects and the experimental set up.Comment: Latex file, 4 ps file
Autonomous clustering using rough set theory
This paper proposes a clustering technique that minimises the need for subjective
human intervention and is based on elements of rough set theory. The proposed algorithm is
unified in its approach to clustering and makes use of both local and global data properties to
obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and
results from three data sets of single and mixed attribute types are used to illustrate the
technique and establish its efficiency
Vortex Motion Noise in Micrometre-Sized Thin Films of the Amorphous Nb0.7Ge0.3 Weak-Pinning Superconductor
We report high-resolution measurements of voltage (V) noise in the mixed
state of micrometre-sized thin films of amorphous Nb0.7Ge0.3, which is a good
representative of weak-pinning superconductors. There is a remarkable
difference between the noise below and above the irreversibility field Birr.
Below Birr, in the presence of measurable pinning, the noise at small applied
currents resembles shot noise, and in the regime of flux flow at larger
currents decreases with increasing voltage due to a progressive ordering of the
vortex motion. At magnetic fields B between Birr and the upper critical field
Bc2 flux flow is present already at vanishingly small currents. In this regime
the noise scales with (1-B/Bc2)^2 V^2 and has a frequency (f) spectrum of 1/f
type. We interpret this noise in terms of the properties of strongly driven
depinned vortex systems at high vortex density.Comment: 8 pages, 5 figures, version accepted for publication in PR
Collective Transport in Arrays of Quantum Dots
(WORDS: QUANTUM DOTS, COLLECTIVE TRANSPORT, PHYSICAL EXAMPLE OF KPZ)
Collective charge transport is studied in one- and two-dimensional arrays of
small normal-metal dots separated by tunnel barriers. At temperatures well
below the charging energy of a dot, disorder leads to a threshold for
conduction which grows linearly with the size of the array. For short-ranged
interactions, one of the correlation length exponents near threshold is found
from a novel argument based on interface growth. The dynamical exponent for the
current above threshold is also predicted analytically, and the requirements
for its experimental observation are described.Comment: 12 pages, 3 postscript files included, REVTEX v2, (also available by
anonymous FTP from external.nj.nec.com, in directory /pub/alan/dotarrays [as
separate files]) [replacement: FIX OF WRONG VERSION, BAD SHAR] March 17,
1993, NEC
Long-term chromospheric activity in southern M dwarfs: Gl 229 A and Gl 752 A
Several late-type stars present activity cycles similar to that of the Sun.
However, these cycles have been mostly studied in F to K stars. Due to their
small intrinsic brightness, M dwarfs are not usually the targets of long-term
observational studies of stellar activity, and their long-term variability is
generally not known. In this work, we study the long-term activity of two M
dwarf stars: Gl 229 A (M1/2) and Gl 752 A (M2.5). We employ medium resolution
echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory
CASLEO between the years 2000 and 2010 and photometric observations obtained
from the ASAS database. We analyzed Ca \II K line-core fluxes and the mean V
magnitude with the Lomb-Scargle periodogram, and we obtain possible activity
cycles of 4 yr and 7 yr for Gl 229 A and Gl 752 A respectively.Comment: Accepted for publication by Astronomical Journal (AJ
- …
