545 research outputs found
Ultrasmall divergence of laser-driven ion beams from nanometer thick foils
We report on experimental studies of divergence of proton beams from
nanometer thick diamond-like carbon (DLC) foils irradiated by an intense laser
with high contrast. Proton beams with extremely small divergence (half angle)
of 2 degree are observed in addition with a remarkably well-collimated feature
over the whole energy range, showing one order of magnitude reduction of the
divergence angle in comparison to the results from micrometer thick targets. We
demonstrate that this reduction arises from a steep longitudinal electron
density gradient and an exponentially decaying transverse profile at the rear
side of the ultrathin foils. Agreements are found both in an analytical model
and in particle-in-cell simulations. Those novel features make nm foils an
attractive alternative for high flux experiments relevant for fundamental
research in nuclear and warm dense matter physics.Comment: 11 pages, 5 figure
The excitation spectrum of mesoscopic proximity structures
We investigate one aspect of the proximity effect, viz., the local density of
states of a superconductor-normal metal sandwich. In contrast to earlier work,
we allow for the presence of an arbitrary concentration of impurities in the
structure. The superconductor induces a gap in the normal metal spectrum that
is proportional to the inverse of the elastic mean free path l_N for rather
clean systems. For a mean free path much shorter than the thickness of the
normal metal, we find a gap size proportional to l_N that approaches the
behavior predicted by the Usadel equation (diffusive limit). We also discuss
the influence of interface and surface roughness, the consequences of a
non-ideal transmittivity of the interface, and the dependence of our results on
the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
Rough Surface Effect on Meissner Diamagnetism in Normal-layer of N-S Proximity-Contact System
Rough surface effect on the Meissner diamagnetic current in the normal layer
of proximity contact N-S bi-layer is investigated in the clean limit. The
diamagnetic current and the screening length are calculated by use of
quasi-classical Green's function. We show that the surface roughness has a
sizable effect, even when a normal layer width is large compared with the
coherence length . The effect is as large as that
of the impurity scattering and also as that of the finite reflection at the N-S
interface.Comment: 12 pages, 3 figures. To be published in J. Phys. Soc. Jpn. Vol.71-
Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers
We have investigated the diamagnetic response of composite NS proximity
wires, consisting of a clean silver or copper coating, in good electrical
contact to a superconducting niobium or tantalum core. The samples show strong
induced diamagnetism in the normal layer, resulting in a nearly complete
Meissner screening at low temperatures. The temperature dependence of the
linear diamagnetic susceptibility data is successfully described by the
quasiclassical Eilenberger theory including elastic scattering characterised by
a mean free path l. Using the mean free path as the only fit parameter we found
values of l in the range 0.1-1 of the normal metal layer thickness d_N, which
are in rough agreement with the ones obtained from residual resistivity
measurements. The fits are satisfactory over the whole temperature range
between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m.
Although a finite mean free path is necessary to correctly describe the
temperature dependence of the linear response diamagnetic susceptibility, the
measured breakdown fields in the nonlinear regime follow the temperature and
thickness dependence given by the clean limit theory. However, there is a
discrepancy in the absolute values. We argue that in order to reach
quantitative agreement one needs to take into account the mean free path from
the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure
Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory
Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.
Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n=2-8)
Conformational energies of n-butane, n-pentane, and n-hexane have been
calculated at the CCSD(T) level and at or near the basis set limit.
Post-CCSD(T) contribution were considered and found to be unimportant. The data
thus obtained were used to assess the performance of a variety of density
functional methods. Double-hybrid functionals like B2GP-PLYP and B2K-PLYP,
especially with a small Grimme-type empirical dispersion correction, are
capable of rendering conformational energies of CCSD(T) quality. These were
then used as a `secondary standard' for a larger sample of alkanes, including
isopentane and the branched hexanes as well as key isomers of heptane and
octane. Popular DFT functionals like B3LYP, B3PW91, BLYP, PBE, and PBE0 tend to
overestimate conformer energies without dispersion correction, while the M06
family severely underestimates GG interaction energies. Grimme-type dispersion
corrections for these overcorrect and lead to qualitatively wrong conformer
orderings. All of these functionals also exhibit deficiencies in the conformer
geometries, particularly the backbone torsion angles. The PW6B95 and, to a
lesser extent, BMK functionals are relatively free of these deficiencies.
Performance of these methods is further investigated to derive conformer
ensemble corrections to the enthalpy function, , and the Gibbs
energy function, , of these alkanes. While
is only moderately sensitive to the level of theory, exhibits more pronounced sensitivity. Once again, double hybrids
acquit themselves very well.Comment: J. Phys. Chem. A, revised [Walter Thiel festschrift
Normal transport properties for a classical particle coupled to a non-Ohmic bath
We study the Hamiltonian motion of an ensemble of unconfined classical
particles driven by an external field F through a translationally-invariant,
thermal array of monochromatic Einstein oscillators. The system does not
sustain a stationary state, because the oscillators cannot effectively absorb
the energy of high speed particles. We nonetheless show that the system has at
all positive temperatures a well-defined low-field mobility over macroscopic
time scales of order exp(-c/F). The mobility is independent of F at low fields,
and related to the zero-field diffusion constant D through the Einstein
relation. The system therefore exhibits normal transport even though the bath
obviously has a discrete frequency spectrum (it is simply monochromatic) and is
therefore highly non-Ohmic. Such features are usually associated with anomalous
transport properties
Classical, non-linear, internal dynamics of large, isolated, vibrationally excited molecules
This work reports numerical experiments intended to clarify the internal
equilibration process in large molecules, following vibrational excitation. A
model of amorphous and oxygenated hydrocarbon macromolecule (about 500
atoms)--simulating interstellar dust-- is built up by means of a chemical
simulation code. Its structure is optimized, and its normal modes determined.
About 4.5 eV of potential energy is then deposited locally by perturbing one of
the C-H peripheral bonds, thus simulating the capture of a free H atom by a
dangling C bond. The ensuing relaxation of the system is followed for up to 300
ps, using a molecular mechanics code. When steady state is reached, spectra and
time correlation functions of kinetic energy and bond length fluctuations
indicate that most normal modes have been activated, but the motion remains
quasi-periodic or regular. By contrast, when the molecule is violently excited
or embedded in a thermal bath (modelled by Langevin dynamics), the same markers
clearly depict chaotic motions. Thus it appears that even such a large system
of oscillators is unable to provide the equivalent of a thermal bath to any one
of these, unless there are strong resonances between some of them. In general,
therefore, an energy of a few eV's deposited in an isolated molecule will not
be immediately thermalized. This conclusion is of consequence for the
interpretation of astronomical UIB spectra.
Key Words:IS dust--UIBs--Excitation, relaxation processes.Comment: 19 pages, 9 figures, J. of Phys. B 2002, vol 35(17
Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor
Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides
- …
