907 research outputs found
Heat transfer and Fourier's law in off-equilibrium systems
We study the most suitable procedure to measure the effective temperature in
off-equilibrium systems. We analyze the stationary current established between
an off-equilibrium system and a thermometer and the necessary conditions for
that current to vanish. We find that the thermometer must have a short
characteristic time-scale compared to the typical decorrelation time of the
glassy system to correctly measure the effective temperature. This general
conclusion is confirmed analyzing an ensemble of harmonic oscillators with
Monte Carlo dynamics as an illustrative example of a solvable model of a glass.
We also find that the current defined allows to extend Fourier's law to the
off-equilibrium regime by consistently defining effective transport
coefficients. Our results for the oscillator model explain why thermal
conductivities between thermalized and frozen degrees of freedom in structural
glasses are extremely small.Comment: 7 pages, REVTeX, 4 eps figure
Ground state of a large number of particles on a frozen topography
Problems consisting in finding the ground state of particles interacting with
a given potential constrained to move on a particular geometry are surprisingly
difficult. Explicit solutions have been found for small numbers of particles by
the use of numerical methods in some particular cases such as particles on a
sphere and to a much lesser extent on a torus. In this paper we propose a
general solution to the problem in the opposite limit of a very large number of
particles M by expressing the energy as an expansion in M whose coefficients
can be minimized by a geometrical ansatz. The solution is remarkably universal
with respect to the geometry and the interaction potential. Explicit solutions
for the sphere and the torus are provided. The paper concludes with several
predictions that could be verified by further theoretical or numerical work.Comment: 9 pages, 9 figures, LaTeX fil
Crystalline Order on a Sphere and the Generalized Thomson Problem
We attack generalized Thomson problems with a continuum formalism which
exploits a universal long range interaction between defects depending on the
Young modulus of the underlying lattice. Our predictions for the ground state
energy agree with simulations of long range power law interactions of the form
1/r^{gamma} (0 < gamma < 2) to four significant digits. The regime of grain
boundaries is studied in the context of tilted crystalline order and the
generality of our approach is illustrated with new results for square tilings
on the sphere.Comment: 4 pages, 5 eps figures Fig. 2 revised, improved Fig. 3, reference
typo fixe
Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field
The identification of primary photons or specifying stringent limits on the
photon flux is of major importance for understanding the origin of ultra-high
energy (UHE) cosmic rays. We present a new Monte Carlo program allowing
detailed studies of conversion and cascading of UHE photons in the geomagnetic
field. The program named PRESHOWER can be used both as an independent tool or
together with a shower simulation code. With the stand-alone version of the
code it is possible to investigate various properties of the particle cascade
induced by UHE photons interacting in the Earth's magnetic field before
entering the Earth's atmosphere. Combining this program with an extensive air
shower simulation code such as CORSIKA offers the possibility of investigating
signatures of photon-initiated showers. In particular, features can be studied
that help to discern such showers from the ones induced by hadrons. As an
illustration, calculations for the conditions of the southern part of the
Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected
energy in row 1 of Table 3, extended caption of Table
On a possible photon origin of the most-energetic AGASA events
In this work the ultra high energy cosmic ray events recorded by the AGASA
experiment are analysed. With detailed simulations of the extensive air showers
initiated by photons, the probabilities are determined of the photonic origin
of the 6 AGASA events for which the muon densities were measured and the
reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary
upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and
compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos,
Greec
Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory
Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and
initiate a preshower, i.e. a particle cascade before entering the atmosphere.
We compare the preshower characteristics at the southern and northern sites of
the Pierre Auger Observatory. In addition to a shift of the preshower patterns
on the sky due to the different pointing of the local magnetic field vectors,
the fact that the northern Auger site is closer to the geomagnetic pole results
in a different energy dependence of the preshower effect: photon conversion can
start at smaller energies, but large conversion probabilitites (>90%) are
reached for the whole sky at higher energies compared to the southern Auger
site. We show how the complementary preshower features at the two sites can be
used to search for ultra-high energy photons among cosmic rays. In particular,
the different preshower characteristics at the northern Auger site may provide
an elegant and unambiguous confirmation if a photon signal is detected at the
southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix
A replaced, accepted by Astroparticle Physic
Corrections to flat-space particle dynamics arising from space granularity
The construction of effective Hamiltonians describing corrections to flat
space particle dynamics arising from the granularity of space at very short
distances is discussed in the framework of an heuristic approach to the
semiclassical limit of loop quantum gravity. After some general motivation of
the subject, a brief non-specialist introduction to the basic tools employed in
the loop approach is presented. The heuristical semiclassical limit is
subsequently defined and the application to the case of photons and spin 1/2
fermions is described. The resulting modified Maxwell and Dirac Hamiltonians,
leading in particular to Planck scale corrections in the energy-momentum
relations, are presented. Alternative interpretations of the results and their
limitations, together with other approaches are briefly discussed along the
text. Three topics related to the above methods are reviewed: (1) The
determination of bounds to the Lorentz violating parameters in the fermionic
sector, obtained from clock comparison experiments.(2) The calculation of
radiative corrections in preferred frames associated to space granularity in
the framework of a Yukawa model for the interactions and (3) The calculation of
synchrotron radiation in the framework of the Myers-Pospelov effective theories
describing Lorentz invariance violations, as well as a generalized approach to
radiation in Planck scale modified electrodynamics. The above exploratory
results show that quantum gravity phenomenology provides observational guidance
in the construction of quantum gravity theories and opens up the possibility of
probing Planck scale physics.Comment: 49 pages, 6 figures and 4 tables. Extended version of the talk given
at the 339-th WE-Heraeus-Seminar: Special Relativity, will it survive the
next 100 years?, Potsdam, february 200
Quantum optical dipole radiation fields
We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component
Limits on models of the ultrahigh energy cosmic rays based on topological defects
An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane
The maximally entangled symmetric state in terms of the geometric measure
The geometric measure of entanglement is investigated for permutation
symmetric pure states of multipartite qubit systems, in particular the question
of maximum entanglement. This is done with the help of the Majorana
representation, which maps an n qubit symmetric state to n points on the unit
sphere. It is shown how symmetries of the point distribution can be exploited
to simplify the calculation of entanglement and also help find the maximally
entangled symmetric state. Using a combination of analytical and numerical
results, the most entangled symmetric states for up to 12 qubits are explored
and discussed. The optimization problem on the sphere presented here is then
compared with two classical optimization problems on the S^2 sphere, namely
Toth's problem and Thomson's problem, and it is observed that, in general, they
are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and
reference
- …
