907 research outputs found

    Heat transfer and Fourier's law in off-equilibrium systems

    Get PDF
    We study the most suitable procedure to measure the effective temperature in off-equilibrium systems. We analyze the stationary current established between an off-equilibrium system and a thermometer and the necessary conditions for that current to vanish. We find that the thermometer must have a short characteristic time-scale compared to the typical decorrelation time of the glassy system to correctly measure the effective temperature. This general conclusion is confirmed analyzing an ensemble of harmonic oscillators with Monte Carlo dynamics as an illustrative example of a solvable model of a glass. We also find that the current defined allows to extend Fourier's law to the off-equilibrium regime by consistently defining effective transport coefficients. Our results for the oscillator model explain why thermal conductivities between thermalized and frozen degrees of freedom in structural glasses are extremely small.Comment: 7 pages, REVTeX, 4 eps figure

    Ground state of a large number of particles on a frozen topography

    Full text link
    Problems consisting in finding the ground state of particles interacting with a given potential constrained to move on a particular geometry are surprisingly difficult. Explicit solutions have been found for small numbers of particles by the use of numerical methods in some particular cases such as particles on a sphere and to a much lesser extent on a torus. In this paper we propose a general solution to the problem in the opposite limit of a very large number of particles M by expressing the energy as an expansion in M whose coefficients can be minimized by a geometrical ansatz. The solution is remarkably universal with respect to the geometry and the interaction potential. Explicit solutions for the sphere and the torus are provided. The paper concludes with several predictions that could be verified by further theoretical or numerical work.Comment: 9 pages, 9 figures, LaTeX fil

    Crystalline Order on a Sphere and the Generalized Thomson Problem

    Get PDF
    We attack generalized Thomson problems with a continuum formalism which exploits a universal long range interaction between defects depending on the Young modulus of the underlying lattice. Our predictions for the ground state energy agree with simulations of long range power law interactions of the form 1/r^{gamma} (0 < gamma < 2) to four significant digits. The regime of grain boundaries is studied in the context of tilted crystalline order and the generality of our approach is illustrated with new results for square tilings on the sphere.Comment: 4 pages, 5 eps figures Fig. 2 revised, improved Fig. 3, reference typo fixe

    Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field

    Full text link
    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. We present a new Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected energy in row 1 of Table 3, extended caption of Table

    On a possible photon origin of the most-energetic AGASA events

    Full text link
    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analysed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos, Greec

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    Corrections to flat-space particle dynamics arising from space granularity

    Full text link
    The construction of effective Hamiltonians describing corrections to flat space particle dynamics arising from the granularity of space at very short distances is discussed in the framework of an heuristic approach to the semiclassical limit of loop quantum gravity. After some general motivation of the subject, a brief non-specialist introduction to the basic tools employed in the loop approach is presented. The heuristical semiclassical limit is subsequently defined and the application to the case of photons and spin 1/2 fermions is described. The resulting modified Maxwell and Dirac Hamiltonians, leading in particular to Planck scale corrections in the energy-momentum relations, are presented. Alternative interpretations of the results and their limitations, together with other approaches are briefly discussed along the text. Three topics related to the above methods are reviewed: (1) The determination of bounds to the Lorentz violating parameters in the fermionic sector, obtained from clock comparison experiments.(2) The calculation of radiative corrections in preferred frames associated to space granularity in the framework of a Yukawa model for the interactions and (3) The calculation of synchrotron radiation in the framework of the Myers-Pospelov effective theories describing Lorentz invariance violations, as well as a generalized approach to radiation in Planck scale modified electrodynamics. The above exploratory results show that quantum gravity phenomenology provides observational guidance in the construction of quantum gravity theories and opens up the possibility of probing Planck scale physics.Comment: 49 pages, 6 figures and 4 tables. Extended version of the talk given at the 339-th WE-Heraeus-Seminar: Special Relativity, will it survive the next 100 years?, Potsdam, february 200

    Quantum optical dipole radiation fields

    Get PDF
    We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    The maximally entangled symmetric state in terms of the geometric measure

    Full text link
    The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calculation of entanglement and also help find the maximally entangled symmetric state. Using a combination of analytical and numerical results, the most entangled symmetric states for up to 12 qubits are explored and discussed. The optimization problem on the sphere presented here is then compared with two classical optimization problems on the S^2 sphere, namely Toth's problem and Thomson's problem, and it is observed that, in general, they are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and reference
    corecore