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Abstract
We introduce quantum optical dipole radiation fields defined in terms of
photon creation and annihilation operators. These fields are identified through
their spatial dependence, as the components of the total fields that survive
infinitely far from the dipole source. We use these radiation fields to pertur-
batively evaluate the electromagnetic radiated energy-flux of the excited
dipole. Our results indicate that the standard interpretation of a bare atom
surrounded by a localised virtual photon cloud, is difficult to sustain, because
the radiated energy-flux surviving infinitely far from the source contains vir-
tual contributions. It follows that there is a clear distinction to be made
between a radiative photon defined in terms of the radiation fields and a real
photon, whose identification depends on whether or not a given process
conserves the free energy. This free energy is represented by the difference
between the total dipole-field Hamiltonian and its interaction component.

Keywords: quantum optics, radiation fields, virtual photons, Poynting vector

1. Introduction

As the first successful field theory Maxwell electrodynamics revolutionised our understanding
of light and matter and its wide applicability has ensured its status as one of the pillars of
modern physics. At the same time its beauty and elegance has resulted in a plethora of
theoretical advancements and generalisations. Its basic ontological component is the
electromagnetic field, which assigns electromagnetic properties to events in spacetime. The
source of these fields is charged matter and the behaviour of the fields can be classified in
terms of the distance from the source. In classical Maxwell theory radiation is typically
defined as electromagnetic energy that survives infinitely far away from the source and is
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therefore able to ‘detach’ itself from the source in question. The radiation fields are defined as
the components of the total fields that contribute to this radiated energy. The remainder of the
electromagnetic energy is viewed as permanently attached to the charged source (see, for
example, [1]).

In quantum electrodynamics and quantum optics the primary ontological object is the
photon. Photons are discrete quanta of electromagnetic energy, but aside from their discrete
nature, they do not behave like particles in any conventional sense. As relativistic quanta, they
cannot be localised in a way analogous to the non-relativistic wave-mechanical particle.

The primary theoretical predictions in quantum electrodynamics come in the form of S-
matrix elements and cross-sections calculated using time-dependent perturbation theory. In
such calculations the Hamiltonian H is split into free and interaction components

= +H H V0 . For a single dipole within the Maxwell field the free component can be further
partitioned as = +H H H0 D F where HD and HF depend solely on the canonical operators of
the dipole and field respectively. The reason for the partitioning = +H H V0 is that the free
component H0 can often be diagonalised exactly, its eigenstates being referred to as bare
states. Processes in QED are then understood as transitions between bare states that occur
when the interaction V is switched on adiabatically from the remote past = -¥t and
switched off adiabatically in the distant future = +¥t .

Photons are often classified as real or virtual based on the extent to which the associated
emission event conserves the free energy H0 and phenomena are then interpreted in terms of
either real or virtual photons. Spontaneous emission, for example, refers to the irreversible
emission of real photons. Level-shift phenomena, on the other hand, are interpreted as
resulting from interactions involving virtual photons.

The conceptual differences between classical and quantum theory with regards to the
understanding of radiative phenomena are of continual interest and the transition between the
two theories has been considered extensively [2–6]. In [7] the authors use covariant Fourier
transforms to provide a framework which to some extent unifies classical and quantum
theories for the treatment of the angular distribution of radiation. In [8] the role of virtual
contributions as part of a unified quantum electrodynamic treatment of energy transfer
between space-like separated dipoles is discussed. This analysis offers a clarification of the
distinction between radiative and radiationless contributions to energy transfer. The nature of
energy transfer, causality and the virtual field, have also received wide-spread attention in the
context of the famous Fermi two-atom problem [9–15]. In [16] the authors analyse the spatial
dependence of transition matrix elements of the quantum dipolar interaction Hamiltonian in
such a way that exposes the varying character, other than simply varying light intensity, of
electromagnetic phenomena in the near, intermediate and far zones.

Here, we investigate virtual photon contributions made by the quantum versions of the
classical radiation fields. These virtual contributions arise in the interacting setting, because
the free vacuum 0∣ ⟩, which is the ground state of H0, does not coincide with the interacting
ground state of H [17–19]. The interaction can therefore result in the production of photons
from the vacuum state 0∣ ⟩ with the simultaneous excitation of the dipole. Similarly, the dipole
can absorb photons from an excited state and make a transition into a lower energy state.
Clearly such processes do not conserve the free energy and moreover they tend to occur over
very short timescales. They are distinct from the vacuum-fluctuations associated with the non-
vanishing of the vacuum expectation values of the squares of the Maxwell fields, the latter
already occurring within free quantum electrodynamics. The photons involved in these
energy non-conserving processes are interpreted as virtual and since for their existence they
rely on the presence of the dipole, they are sometimes hypothesised as forming a localised
cloud surrounding the ‘bare’ dipole [4, 20–25].
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So in both classical and quantum theories electromagnetic energy is supposed to come in
two varieties; energy permanently tied to the charged source and energy able to detach itself
in the form of radiation. It would be natural to interpret the energy of the virtual cloud as the
quantum version of the non-radiative classical energy and to interpret real photons as those
that contribute to the quantum version of the classical radiated energy. Since photons in the
quantum theory are defined in terms of the operator-valued Maxwell fields, one can inves-
tigate the quantum versions of the classical radiation fields to determine whether or not these
straightforward interpretations can in fact be made. To this end one must be able to identify
the radiation fields in terms of photonic operators. This is achieved within the present paper.
Our subsequent analysis of the quantum radiated energy flux of an excited dipole, which is
defined in terms of the quantum Poynting vector, reveals that there is no justification for
interpreting the virtual photon cloud as something that is localised around the dipole.

Only when the radiated energy flux is time-averaged does it coincide with the usual
quantum optical energy flux of spontaneous emission. The time-average removes the con-
tributions resulting from interactions with the virtual cloud, that occur over very short time
scales. Thus, while the interpretation of the bare dipole as being surrounded by a virtual
photon cloud from which photons are continually emitted and reabsorbed is still tenable, this
virtual cloud must be understood as extending infinitely far from the source. Therefore, the
conventional ‘dressed’ atom, which consists of the bare atom plus its virtual cloud is a highly
non-local object.

We remark before continuing that there are other definitions of radiation in classical
electrodynamics besides the definition given in terms of the ‘radiation’ fields and the
appropriate definition is still occasionally the subject of debate. Here we introduce quantum
optical dipole ‘radiation’ fields, which vary as x1 away from the source at the origin 0. We
then analyse the expectation value of the corresponding ‘radiation’ Poynting vector. The
implications of our analysis for quantum electrodynamics are largely independent of whether
or not one deems this Poynting vector to be a true representation of radiated energy flux.

2. Quantum radiation fields

Throughout the remainder of this paper we use natural units such that   m= = = =c 10 0
and pa=e 42 with α the fine structure constant. We consider the case of a non-relativistic
stationary dipole consisting of a single charge-e with mass m anchored to the origin via an
external potential describing a charge+e fixed at the origin. The dipole is described by a non-
relativistic quantum Schrödinger matter field ψ satisfying the anti-commutation relation
y y d¢ = - ¢x x x x,{ ( ) ( )} ( )† and with all other anti-commutators zero. The dipole interacts
with the electromagnetic field, which is described by quantum transverse canonical Maxwell
fields AT and -ET satisfying the commutation relation d¢ = - - ¢A x E x x x, i ijT T

T[ ( ) ( )] ( )
where dij

T denotes the transverse delta-function. All other commutators between the Maxwell
fields are zero.

The minimal-coupling, i.e., Coulomb gauge Hamiltonian describing the dipole-field
system reads

ò òy y= -  + + + +H x
m

e V xx A 0 x E x B xd
1

2
i

1

2
d , 13

T
2 3

T
2 2( ) [ ( )] ( ) [ ( ) ( ) ] ( )†

where = +V V Vext self includes both the external binding potential centred at the origin and
the dipole self-energy, which are respectively defined by
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with y y = -eE x x xL· ( ) ( ) ( )† . The magnetic field in (1) is defined as usual
by =  ´B x A xT( ) ( ).

The quantum Heisenberg equations of motion obtained from (1) are the dipole
approximated quantum Maxwell equations and quantum Lorentz-force law for the dipole
acceleration operator. When solved these equations yield the retarded dipole electric source
field
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with = -t t xr denoting the retarded time (with c= 1) and with

ò y y= -t x t e td x x xd , , . 43( ) ( )[ ] ( ) ( )†

The corresponding radiation source field is defined as the component of the source field
in (3) that varies as x1 , which coincides with the component that depends on the dipole
acceleration

p
´ ´t

x
tE x x x d,

1

4
¨ . 5rad

S
r( ) ≔ ˆ [ˆ ( )] ( )

The magnetic radiation source field is then given by

p
´ = - ´t t

x
tB x x E x x d, ,

1

4
¨ . 6rad

S
rad
S

r( ) ≔ ˆ ( ) ˆ ( ) ( )

Since according to (5) and (6) the radiation source fields are orthogonal to x, we make an
ansatz for the total quantum radiation fields defined in terms of photonic operators by
identifying the components of the usual mode expansions of the quantum Maxwell fields that
are orthogonal to x in the following sense
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where e x e x x, ,1 2{ ( ) ( ) ˆ} composes a right-handed orthonormal triad of three-vectors. The
operators wla x( ˆ) and wla x( ˆ)† in (7) are respectively annihilation and creation operators for a
photon with polarisation λ and wavevector w=k x̂. They act within the continuous Bosonic
Fock space built out of the single-particle space that consists of square-integrable 2-valued
functions. Their relevant algebraic properties are specified entirely through the commutation
relation

d d¢ = - ¢¢ ¢l l lla ak k k k, . 8[ ( ) ( )] ( ) ( )†
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The definitions in (7) evaluate the photonic operators within a restricted space of wavevectors
w=k x̂ having variable magnitude w Î ¥0,( ), but which necessarily point in the direction

from the source (at 0) to the field point x.
In order to justify the definitions in (7) let us calculate the source components of these

fields. The Heisenberg equation for the photon annihilation operator with general wavevector
k is found using (1) and can be integrated to yield the solution

ò= + ¢ ¢¢
l l

w w
l

- - -a t a g t tk k d e k, 0, e i d e , 9t
t

t ti

0

i( ) ( ) ˙ ( ) · ( ) ( )( )

where w = k∣ ∣ and w p=g 1 2 2 3( ) . Note that this equation holds for any k and therefore in
particular when w=k x̂. The integral term represents the source component, whose
substitution into (7) with w=k x̂ yields the radiation source potential
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The radiation source fields can be obtained from (10) via
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or directly from (7) as
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The radiation fields can also be found using the Poincaré gauge (multipolar) Hamiltonian
leading to the same result as in (12). Thus, unlike the total fields (see [26, 27]), the source
components of the radiation fields are identical in either gauge. The source components of the
total fields differ between the two gauges only by a static nearzone polarisation field which
plays no role in radiative effects within the radiation zone. In fact, within the dipole
approximation this polarisation field is entirely localised at the origin.

3. The classification of photons

The S-matrix gives the probability amplitudes associated with transitions occurring over
infinite time intervals between the eigenstates n{∣ ⟩} of H0; w=H n nn0 ∣ ⟩ ∣ ⟩. The S-matrix
element describing a transition from a bare state i∣ ⟩ with energy wi into a bare state f∣ ⟩ with
energy wf has the form [28, 29]
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d p d w w= - -
t

t
¥

S T2 i lim , 13fi fi f i fi( ) ( )

where T is called the transition matrix and is defined in terms of the Hamiltonian resolvent.
The exact form of a transition matrix element is unimportant here. The important element of
(13) for our purposes is the function

d w w
p

w w t
w w

d w w d w w- =
-

-
- = -t

t
t

¥

1 sin 2
, lim . 14f i

f i

f i
f i f i( )

[( ) ]
( ) ( ) ( )

The presence of the delta function in (13) shows that S-matrix elements describe processes
conserving H0. Photons in QED are the quanta associated with the free field energy HF. The
distinction between real and virtual photons depends on the process under study. Photons
occurring in processes that conserve H0 are necessarily real, while others may be virtual. Of
course, energy conserving processes can be made up of shorter energy non-conserving
processes.

The above classification of photons is somewhat limited, because a process, in the sense
used above, refers to a transition occurring over an infinite period of time. For interactions
occurring over finite times the distinction between real and virtual photons is less straight-
forward and generally relies upon the use of the energy–time uncertainty relation. This
uncertainty relation can be derived by noting that when the limit t  ¥ is avoided in (13)
one obtains only an approximate delta function d w w-t

f i( ) with a dominant peak at w w=f i

that has a width of the order of t1 . This is taken as expressing the conservation of H0

through the i f∣ ⟩ ∣ ⟩ transition, to within an uncertainty of the order of t1 . We therefore
obtain the energy–time uncertainty relation [29]

w
t

D ~
1

. 15( )

It is important to recognise that since time is not represented by an operator in con-
ventional quantum theory, the energy–time uncertainty relation is not the same as the Hei-
senberg uncertainty principle, which necessarily holds for Fourier-conjugate operators like the
position and momentum operators encountered in non-relativistic wave-mechanics. The
quantitative justification for the energy–time uncertainty relation (15) is based entirely on the
presence of the function dt in (13). But when the limit t  ¥ in (13) is avoided, as in the
derivation of (15), the justification for assuming that a transition probability amplitude has the
structure given by the right-hand side of (13) is less clear. Furthermore, the function dt

exhibts oscillations outside of the main peak at w w=f i. As such there is nothing to prohibit
non-zero values of wf outside the range w t 1i , from contributing to the probability
amplitude of a transition into a range of final states. This has the result that probability
amplitudes for finite-time transitions into a complete set of final states become frequency cut-
off dependent. The contributions of frequencies wf that do not obey (15) can be significant for
quite natural choices of cut-offs, for particular forms of interaction Hamiltonian (coupling
strengths) [19]. The energy–time uncertainty relation should not therefore be regarded as a
fundamental principle that cannot be violated, but rather as a tool with which useful inter-
pretations might be offered.

Of course, whether or not a so-called virtual photon is in fact real depends on whether or
not it is possible to detect such a photon in the lab. The idea of detecting the virtual cloud
directly has received some attention in the past and has been modelled via direct coupling to a
pointer [23, 24]. Based on the energy–time uncertainty principle, it has been suggested that
measurements with duration t w w< +1 0( ), where ω denotes the frequency of the photon
and w0 denotes the frequency of the dipole transition, are capable of resolving virtual
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emission events. In such measurements the dipole would therefore be perceived as bare by the
pointer [23, 24]. The measurement process is capable of transferring an energy no larger than
t1 into the dipole-field system, so that if t w w< +1 0( ) the virtual excitation becomes

real. According to these ideas the distinction between real and virtual photons can not be
made independent of the experimental setup considered. Moreover, as one might expect, no
experiment could possibly distinguish between a real and virtual photon, because a detected
photon is necessarily real.

Nevertheless, it is clear that the classification of photons into real and virtual groups
always involves the free energy H0, along with the question of its conservation. In contrast, in
classical electrodynamics the quantity H0 that results from a canonical formulation is not
usually viewed as possessing any special significance. Instead the Maxwell fields are analysed
directly. As pointed out in the introduction, the quantum Maxwell equations can formally be
solved in the same way as in classical theory and it is well known that virtual contributions to
the fields cannot be neglected without sacrificing their causal nature [9–15]. This shows that
while not directly observable virtual photons do have physical significance beyond their role
played in level-shift phenomena.

The retarded fields can be split into near zone, intermediate zone and far zone (radiation)
fields each of which is fully retarded. This suggests that the radiation fields in particular
contain virtual contributions, in which case the virtual cloud could not possibly be considered
as something localised around the atom. On the other hand the localisation of the virtual cloud
is qualitatively consistent with the energy–time uncertainty relation if we assume that virtual
photons propagate with the finite speed of light. This would mean that they cannot travel as
far from the dipole as real photons, because they exist on much shorter timescales. Such
reasoning is however, dubious, given that photons cannot generally be localised and the sense
in which they can be viewed as propagating is unclear.

In the following section we define the real contribution to the radiated energy-flux as that
which gives rise to the standard quantum optical spontaneous emission rate usually calculated
using first order S-matrix theory. This is the rate at which the excited dipole makes a transition
into a lower energy state and in doing so emits a photon with exactly the frequency of the
transition. The emitted photons are therefore necessarily real. We define the remaining
contribution to the energy-flux as the virtual contribution for which emission events do not
necessarily conserve the free energy, despite by assumption satisfying an energy–time
uncertainty relation of the kind in (15). We can then ask whether or not the radiation fields
introduced in the previous section contribute to the virtual component of the energy-flux,
which if the case would mean that the virtual contribution does not vanish infinitely far from
the charged source.

4. Quantum radiated energy flux

In [30–32] the spontaneous emission rate of an excited dipole is calculated by evaluating the
expectation value of the associated radiated power using second order perturbation theory.
The radiated power is defined in terms of the quantum Poynting vector. This method of
deriving the spontaneous emission rate has direct physical appeal, because it determines the
relationship between two fundamental quantities. The Poynting vector represents the
electromagnetic energy-flux derived from first principles via Noether’s theorem, while the
rate of spontaneous emission calculated using first order S-matrix theory is a fundamental
result in quantum electrodynamics.
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The first step in the calculation is the determination of the expected Poynting vector, the
result of which can be expressed in the form

= ´ - ´ = +S E B B E S S
1

2
, 16e e e e e0; 0; 0;

real
0;

virtual
0;⟨ ⟩ (⟨ ⟩ ⟨ ⟩ ) ⟨ ⟩ ⟨ ⟩ ( )

where the expectation value is taken in the photon vacuum 0∣ ⟩ and with the dipole in an
excited state e∣ ⟩. In (16) the terms Sreal⟨ ⟩ and Svirtual⟨ ⟩ give the real and virtual contributions
respectively, whose explicit form follows from lengthy calculations. Their identification as
real and virtual contributions is motivated using Poynting’s theorem, which gives the energy-
flux across the surface of a sphere with radius x as

ò= WP x x Sd , 17e
2

0;ˆ · ⟨ ⟩ ( )

where Wd denotes integration over the unit sphere. Substituting the explicit expression found
for Sreal⟨ ⟩ into (17) gives the real component of the energy-flux as
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in which we recognise Ge m as the standard quantum optical spontaneous emission rate for
the transition e m∣ ⟩ ∣ ⟩. The interpretation of Preal is clear; (real) photons with the energy
wem of the dipole transition e m∣ ⟩ ∣ ⟩ are emitted at a rate Ge m, giving an energy flux
w Gem e m. The total real energy flux is the sum over all transitions for which >e m, i.e., for
which events conserve H0. This is the justification for identifying Sreal as the component of
the Poynting vector that gives the contribution of real photons.

So, when virtual contributions are ignored the expected Poynting vector gives the
standard spontaneous emission flux of an excited dipole usually found using Fermi’s golden
rule, i.e., first order S-matrix theory. Despite the simplicity of the final result (18) the cal-
culations in [30–32] are fairly involved owing to the use of the complete Maxwell fields,
which result in complicated mode function summations.

Here we repeat the calculation carried out in [30–32], but instead of using the total fields
we use the radiation fields introduced in (7). We employ the same methodology of using time-
dependent perturbation theory in the Heisenberg picture to find the expectation value

´ =E B x E . 19e erad rad 0; rad
2

0;⟨ ⟩ ˆ ⟨ ⟩ ( )

We then substitute the result into

ò ò= W = WP x xx S Ed d 20e erad
2

rad 0;
2

rad
2

0;ˆ · ⟨ ⟩ ⟨ ⟩ ( )

to obtain the radiated energy flux. We find that when virtual contributions are ignored we
obtain precisely the same result as is obtained using the total fields; =P Prad

real with Preal

given in (18). This shows that only the radiation fields contribute to the real spontaneous
emission of photons. Moreover, for the purpose of calculating the spontaneous emission rate
given by (18) our method offers a significant simplification over those in [30–32], because the
radiation field mode expansions in (7) turn out to be much simpler to work with than the
corresponding mode expansions of the total fields. Since the near zone and intermediate zone
components do not contribute to the final result (18), there is no need to retain them
throughout the calculation. Of course, for any phenomena such that the near and intermediate
zone fields do make a contribution, use of the radiation fields in (7) could at best be viewed as
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an approximation. Our calculation demonstrates that spontaneous emission is not an example
of such a phenomenon.

Our calculation further shows that the radiation fields do contribute to the remaining
virtual component of the energy-flux Pvirtual. That is, we do not obtain

º ºP P P, 0rad
real

rad
virtual , meaning that just like in the calculation involving the total fields

one still has to neglect virtual contributions in order to obtain the standard real spontaneous
emission rate from the Poynting vector [30–32]. Thus, the virtual contributions to the energy-
flux are not produced by the near and intermediate zone fields alone and a virtual component
of the radiated energy flux does survive infinitely far from the dipole source. Starting from the
radiation fields in (7), no additional approximations are used in this section, apart from the
dipole approximation and perturbation theory.

We use the Poincaré gauge (multipolar) Hamiltonian in the electric dipole approximation

= -H H d D 0 , 210 T· ( ) ( )

where DT denotes the transverse displacement field and

òå åw w= + +
l

l l
⎡
⎣⎢

⎤
⎦⎥H b b k a ak kd

1

2
. 22

n
n n n0

3 ( ) ( ) ( )† †

We have neglected any self-energy terms of order e2 in (21), because these terms do not
contribute in the second order evaluation of the energy flux in (19). The operator bn

† in (21)
creates the dipole energy eigenstate n∣ ⟩ from the vacuum; =b n0n ∣ ⟩ ∣ ⟩† and is related to the
field ψ via

ò j yb x x xd , 23n n
3≔ ( ) ( ) ( )† †

where jn is a single-particle bare dipole energy eigenfunction defined through the equation

p
j w j

-
- =

⎡
⎣⎢

⎤
⎦⎥m

e

x
x x

2 4
. 24n n n

2 2
( ) ( ) ( )

These energy basis operators can be used just like the position basis fields ψ and y† to express
dipole operators. For example, the dipole moment can be written

å=t b t b td d 25
nm

nm n m( ) ( ) ( ) ( )†

where n md d 0nm ≔ ⟨ ∣ ( )∣ ⟩.
For our perturbative calculation we introduce the interaction picture operators al t k,( )

and b tn ( ) defined by

b aw
l

w
lt b t t ak ke , , e . 26n

t
n

ti in( ) ≔ ( ) ( ) ≔ ( ) ( )
The integrated equations of motion for these operators are [31]

òåa a w b b= + ¢ ¢ ¢¢
l l l

w w+t g t t t ak k e k d, 0, d e , 27
n m

nm

t
t

n m
, 0

i nm( ) ( ) ( ) · ( ) ( ) ( )( ) †

ò òååb b w b

a

= - ¢ ¢

¢ -

¢

¢
l

l
w

w
l

-

-

t k g t t

t b

e k d

k

0 d d e

e , h.c. , 27

n n
m

nm

t
t

m

t

3

0

i

i

nm( ) ( ) ( ) · ( )

[ ( ) ] ( )

where w w w-nm n m≔ . The zeroth order terms in the perturbative expansions of the above
solutions are simply the free components
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a a a b b b= =l l lt tk k k, 0, , 0 . 28n n n
0 0( ) ( ) ≕ ( ) ( ) ( ) ≕ ( )( ) ( )

For a second order (in e) evaluation of the expectation value in (19) we require the radiation
field Erad upto second order. The zeroth order field is simply the component giving the free
evolution

òå w
w
p

a w a w+
l

l l
w

l
w

=

¥
-t

x
E x e x x x,

1

2
d e e , 29t t

rad
0

1,2 0

3
i ir r( ) ≔ ( ) [ ( ˆ) ( ˆ) ] ( )( ) †

The first order field is easily obtained by substituting the zeroth order approximation of b tn ( )
given in (28) and its conjugate into (25) and then substituting the result into (12a) to give

ååp
w b b=

l
l l

wt
x

E x e x e x d,
1

4
e . 30

nm
nm nm n m

t
rad
1 2 i nm r( ) ( )[ ( ) · ] ( )( ) †

Finally the second order field tE x,rad
2 ( )( ) is given by

òå w
w
p

a w a w+
l

l l
w

l
w

=

¥
-t

x
t tE x e x x x,

1

2
d , e , e 31t t

rad
2

1,2 0

3
2 i 2 ir r( ) ≔ ( ) [ ( ˆ) ( ˆ) ] ( )( ) ( ) ( ) †

with

òåa w b b b b= ¢ ¢ + ¢¢
l l

w w+t g t t t ak e k d, d e , 32
mn

mn

t
t

m n m n
2

0

i 1 1mn( ) ( ) · [ ( ) ( ) ] ( )( ) ( ) † ( ) ( )†

* *ò ååb w b a w w a w w= + - -
l

l l lt k g f t f t

b

e k d k kd , , ,

32
m

nm m mn mn
1 3( ) ( ) · [ ( ) ( ) ( ) ( )]

( )

( ) †

wherein for convenience we have defined the function

w
w
-w

f t,
e 1

i
. 33

ti
( ) ≔ ( )

Substituting the second order expansion of Erad into (19) we obtain the expected energy flux
correct to second order, as a sum of three terms

= + +E E E E E E E . 34e e e erad
2

0; rad
1

rad
1

0; rad
0

rad
2

0; rad
2

rad
0

0;⟨ ⟩ ⟨ · ⟩ ⟨ · ⟩ ⟨ · ⟩ ( )( ) ( ) ( ) ( ) ( ) ( )

The first term above gives the contribution from the first order fields and is easily evaluated
using (30) as

ååp
w=

l
l

x
E E e x d

1

16
, 35e

m
em emrad

1
rad
1

0; 2 2
2 4⟨ · ⟩ ∣ ( ) · ∣ ( )( ) ( )

which we recognise as an emission flux to which all dipole levels >n e and <n e contribute
[30–32].

In a similar fashion the remaining contributions in (34) are found using (29), (31) and
(32) to be
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*

òååp
w w

w w w w

=

´
¢

- ¢ - + ¢¢ ¢

¢

l
l

w

w w

¥
-

-

=

⎡
⎣⎢

⎤
⎦⎥

x

t
f t f t

E x E x

e x d
1

4 2
d e

d

d
, e , e 36

e

m
em

t

em
t

em
t

t t

rad
0

rad
2

0;

2 3
2

0

2 i

2

2
i iem em

r

r

⟨ ( ) · ( )⟩

( )
∣ ( ) · ∣

{ ( ) ( ) } ( )

( ) ( )

with the remaining term the complex conjugate of the above. This expression can be
partitioned into time-dependent and time-independent contributions. We interpret the time-
dependent contributions as those arising from interactions with the virtual cloud, which will
be justified in what follows. Meanwhile, the time-independent contribution is

òååp
w w

w w w w
=

-
-

+l
l

⎡
⎣⎢

⎤
⎦⎥x

E E e x d
i

4 2
d

1 1
. 37e

m
em

em em
rad
0

rad
2

0;
real

2 3
2 4⟨ · ⟩

( )
∣ ( ) · ∣ ( )( ) ( )

To evaluate the integral above we use a retarded propagator prescription consistent with the
use of the retarded fields. This entails adding an infinitesimal imaginary term   >i , 0 to the
denominators in square brackets in (37), which shifts the simple poles into the lower half
complex plane. Using the distributional identity





 w w
pd w

+
= -


lim

1

i
i 38

0
( ) ( )

with  denoting the Cauchy principal integral value, we then obtain

ååp
w w+ =

l
l

x
E E e x dc.c

1

16
sgn . 39e

m
em em emrad

0
rad
2

0;
real

2 2
2 4⟨ · ⟩ ∣ ( ) · ∣ ( ) ( )( ) ( )

Thus, summing up all contributions we obtain to second order in e

ååp
w= +

l
l

<x
x E

x
e x d x E

8
. 40e

m e
em em erad

2
0; 2 2

2 4
rad
2

0;
virtualˆ ⟨ ⟩ ˆ ∣ ( ) · ∣ ˆ ⟨ ⟩ ( )

To understand the significance of the first term above note that if we now substitute the first
term in (40) into (20) and perform the integration over solid angle we obtain

å å
w

p
w

w
p

= = G G
< <

 P
d d

3
,

3
, 41

m e

em em

m e
e m em e m

em em
rad
real

4 2 3 2∣ ∣
≔

∣ ∣
( )

which is identical to (18). Having identified the contribution of real photons to the radiated
power, the remaining contribution Prad

virtual arising from the second term x E erad
2

0;
virtualˆ ⟨ ⟩ in (40),

must be the contribution of the virtual cloud and is given by

ò

ò

ååp
w

w w
w w w w

=
-

W

-
-

+
+

l
l

w w w w¥ - - - +⎡
⎣⎢

⎤
⎦⎥

P t e x d
i

4 2
d

d
e e

c.c. 42

m
em em

t

em

t

em

rad
virtual

3
2 2

0

2
i iem emr r

( )
( )

∣ ( ) · ∣

( )
( ) ( )

The virtual radiated power is clearly non-zero in general, but its time-dependence is entirely
oscillatory. As a result the time-average of the time-dependent integrand in (42) vanishes, so
that

ò= =
¥

P
T

t P tlim
1

d 0. 43
T

T

rad
virtual

0
rad
virtual ( ) ( )

Eur. J. Phys. 37 (2016) 034001 A Stokes

11



Since Preal is time-independent it follows that = =P P Prad
real real. These time-averaged

results are consistent with the interpretation of the virtual emission and reabsorbtion events as
transient phenomena occurring over very short time-scales. The virtual radiative interactions
appear to be characterised entirely through their temporal properties and as such, their seems
to be no good reason for interpreting the virtual cloud as something spatially localised around
the dipole. Indeed the non-zero contribution Prad

virtual shows that virtual photon effects do
extend infinitely far from the dipole source, despite their temporally transient behaviour.

5. Conclusions

In this paper we have exhibited expressions for quantum dipole radiation fields in terms of
photonic operators. The aim has been to assess whether real photonic energy can be identified
as the quantum version of radiated electromagnetic classical energy and whether virtual
photonic energy can be identified as the quantum version of non-radiative classical electro-
magnetic energy. We have demonstrated that the answer to this question is negative. The
underlying reason for this is a shift, when the transition to the quantum theory is made, in the
means by which electromagnetic phenomena are interpreted. In quantum electrodynamics the
concept of a process in which photons are emitted, absorbed and exchanged, plays a central
role. This, no doubt, is the result of the general quantum field-theoretic strategy of pertur-
batively calculating scattering-matrix elements and cross-sections as the basic theoretical
predictions.

We have shown that the quantum dressed atom must be a highly non-local object, that
extends infinitely far from the bare atom. We have shown that even when quantum radiation
fields alone are used for the calculation of the Poynting vector energy-flux, we do not simply
obtain the standard quantum optical spontaneous emission rate, which accounts for all
emission events of photons that are necessarily real. This means that according to classical
interpretive strategies of identifying radiation as the component of the energy-flux obtained
from the radiation fields, both real and virtual photons must be involved in the emission of
radiation, which is contrary to the typical quantum viewpoint whereby only real photons play
a role.

Since one expects the classification of electromagnetic phenomena into radiative and
non-radiative groups to be unique, one might expect that radiative classifications made in
terms of free-energy should be the same as those made in terms of the spatial fields. As we
have shown this is not the case. Moreover, it is important to note that either of these
classification schemes can in principle be employed in either classical or quantum theoretical
settings. Certainly, H0 along with normal variables corresponding to photonic operators can
be identified in the classical theory. Likewise, the spatial dependence of the source fields can
be analysed in the quantum theory. Thus, in understanding radiative phenomena we have at
least two inequivalent classification schemes (fields and photons) and at least two theoretical
settings (classical and quantum), but the situation is not so simple so as to require that a given
classification scheme must be paired with a given theoretical setting.
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