11 research outputs found

    Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response

    No full text
    We assessed the avidity maturation process elicited by human immunization with alum-adsorbed HBsAg alone or with a novel adjuvant containing CpG motifs (CpG 7909). Mean avidity indexes and distribution of low- and high-avidity anti-HBs indicated that avidity maturation essentially takes place late after priming. CpG 7909 markedly enhanced this affinity maturation process, increasing the pool of high-avidity antibodies. The influence of CpG 7909 was antigen-specific, isotype-specific and distinct from the influence on anti-HBs production, as avidity did not correlate with anti-HBs IgG titers. This is the first demonstration that a novel human adjuvant may induce antibodies with higher antigen-binding affinity

    Vpliv učenja in obsega žoge na spremembo hitrosti rokometnega strela

    Get PDF
    Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from <i>Lactococcus lactis</i> is compared with the well-characterized TrxR from <i>Escherichia coli</i>. The two enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar <i>k</i><sub>cat</sub> values (∼25 s<sup>–1</sup>) with their cognate thioredoxin. Remarkably, however, the <i>L. lactis</i> enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than <i>E. coli</i> TrxR. The rate of light inactivation under standardized conditions (λ<sub>max</sub> = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass of the isoalloxazine ring, and the extracted modified cofactor reacted with dinitrophenyl hydrazine, indicating the presence of an aldehyde. We hypothesize that a methyl group of FAD is oxidized to a formyl group. The significance of this not previously reported oxidation and the exceptionally high rate of oxygen reduction are discussed in relation to other flavin modifications and the possible occurrence of enzymes with similar properties
    corecore