1,753 research outputs found

    Mechanical Impact Testing: A Statistical Measurement

    Get PDF
    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned

    Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Get PDF
    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers

    The effect of early child care attendance on childhood asthma and wheezing: A meta-analysis.

    Get PDF
    ObjectiveResearch evidence offers mixed results regarding the relationship between early child care attendance and childhood asthma and wheezing. A meta-analysis was conducted to synthesize the current research evidence of the association between early child care attendance and the risk of childhood asthma and wheezing.MethodPeer reviewed studies published from 1964-January 2017 were identified in MEDLINE, CINAL, and EMBASE using MeSH headings relevant to child care and asthma. Two investigators independently reviewed the selected articles from this search. All relevant articles that met our inclusion criteria were selected for further analysis. Data were extracted from studies that had sufficient data to analyze the odds of asthma or wheezing among children who attended child care.ResultsThe meta-analysis of 32 studies found that (1) early child care attendance is protective against asthma in children 3-5 years of age but not for children with asthma 6 years of age or older. (2) Early child care attendance increases the risk of wheezing among children 2 years of age or younger, but not the risk of wheezing for children over 2 years of age.ConclusionsThis meta-analysis shows that early child care attendance is not significantly associated with the risk of asthma or wheeze in children 6 years of age or older

    Is the Hyporheic Zone Relevant beyond the Scientific Community?

    Get PDF
    Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors. View Full-Tex

    Promoted Metals Combustion at Ambient and Elevated Temperatures

    Get PDF
    Promoted combustion testing of materials, Test 17 of NASA STD-6001, has been used to assess metal propensity to burn in oxygen rich environments. An igniter is used at the bottom end of a rod to promote ignition, and if combustion is sustained, the burning progresses from the bottom to the top of the rod. The physical mechanisms are very similar to the upward flammability test, Test 1 of NASA STD-6001. The differences are in the normal environmental range of pressures, oxygen content, and sample geometry. Upward flammability testing of organic materials can exhibit a significant transitional region between no burning to complete quasi-state burning. In this transitional region, the burn process exhibits a probabilistic nature. This transitional region has been identified for metals using the promoted combustion testing method at ambient initial temperatures. The work given here is focused on examining the transitional region and the quasi-steady burning region both at conventional ambient testing conditions and at elevated temperatures. A new heated promoted combustion facility and equipment at Marshall Space Flight Center have just been completed to provide the basic data regarding the metals operating temperature limits in contact with oxygen rich atmospheres at high pressures. Initial data have been obtained for Stainless Steel 304L, Stainless Steel 321, Haynes 214, and Inconel 718 at elevated temperatures in 100-percent oxygen atmospheres. These data along with an extended data set at ambient initial temperature test conditions are examined. The pressure boundaries of acceptable, non-burning usage is found to be lowered at elevated temperature

    Fuel dynamics and vegetation recovery after fire in a semiarid Australian shrubland

    No full text
    Understanding fuel dynamics in fire-prone ecosystems is important because fuels play a central role in shaping fire hazard and behaviour. There is ongoing debate over whether fire hazard continually increases with time since fire in shrublands of Mediterranean-Type climates, and studies of the temporal changes in fuel loads can contribute to this discussion. We used a chronosequence of fire ages to investigate fuel dynamics and recovery of vegetation structure in the Acacia-dominated shrublands of interior south-west Western Australia. We collected and measured fuels from vegetation with fire ages ranging from 6 to 80+ years and then fitted linear, negative exponential, quadratic and logarithmic models to explore temporal patterns of fuel accumulation. Components of fine (50 years). Although there is some evidence of shrub senescence in very long-unburnt vegetation (\u3e60 years), no corresponding decline in fuel levels was detected, suggesting lag effects or inter-fire recruitment to maintain vegetation structure and fuel levels. Fuel structure and quantity varied considerably across the landscape, even within areas of the same landform and time since fire. We found that some of this variation was attributable to soil depth but suggest that other environmental factors may also cause variation in vegetation and fuel characteristics

    Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats

    Get PDF
    OBJECTIVE: Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri.METHODS: Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro.RESULTS: Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors.CONCLUSION: Taken together, these data suggest that kaempferol is a unique natural PR modulator that activates PR signaling in vitro and in vivo without triggering PR degradation.</p

    FAPRI 2006 U.S. and World Agricultural Outlook

    Get PDF
    The FAPRI 2006 U.S. and World Agricultural Outlook presents projections of world agricultural production, consumption, and trade under average weather patterns, existing farm policy, and policy commitments under current trade agreements and custom unions. Despite continued high energy prices, world economic growth is expected to remain strong in the coming decade, above 3% per annum. Other major drivers of the 2006 baseline include new bio-energy policies in several large countries, EU sugar policy reform, sanitary and phytosanitary (SPS) shocks in livestock and poultry markets, and movements in the exchange rate.Crop Production/Industries, International Relations/Trade, Livestock Production/Industries,
    corecore