347 research outputs found
Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region.
Past research projects for the year 1974-1975 are listed along with future research programs in the area of air pollution control, remote sensor analysis of smoke plumes, the biosphere component, and field experiments. A detailed budget analysis is presented. Attachments are included on the following topics: mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques, and use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia
Recommended from our members
Highlights of OH, H2SO4, and methane sulfonic acid measurements made aboard the NASA P-3B during Transport and Chemical Evolution over the Pacific
Measurements of hydroxyl radical (OH), sulfuric acid (H2SO4), and methane sulfonic acid (MSA) were performed aboard the NASA P-3B using the selected ion chemical ionization mass spectrometry technique during the Transport and Chemical Evolution over the Pacific (TRACE-P) study. Photochemical box model calculations of OH concentrations yielded generally good agreement with an overall tendency to overestimate the measured OH by ∼20%. Further analysis reveals that this overestimation is present only at altitudes greater than ∼1.5 km, with the model underestimating OH measurements at lower altitudes. Boundary layer H2SO4 measurements, performed in a volcanic plume off the southern coast of Japan, revealed some of the largest marine boundary layer H2SO4 concentrations ever observed and were accompanied by new particle formation. Nighttime measurements of OH, H2SO4, and MSA in the remote pacific off Midway Island revealed significant boundary layer concentrations of H2SO4 and MSA, indicating evidence of nighttime boundary layer oxidation processes but in the absence of OH. A cursory exploration of the sources of production of the H2SO4 and MSA observed at night is presented
Recommended from our members
Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P
An extensive set of carbonyl sulfide (OCS) and carbon disulfide (CS2) observations were made as part of the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) project, which took place in the early spring 2001. TRACE-P sampling focused on the western Pacific region but in total included the geographic region 110°E to 290°E longitude, 5°N to 50°N latitude, and 0–12 km altitude. Substantial OCS and CS2 enhancements were observed for a great many air masses of Chinese and Japanese origin during TRACE-P. Over the western Pacific, mean mixing ratios of long-lived OCS and shorter-lived CS2 showed a gradual decrease by about 10% and a factor of 5–10, respectively, from the surface to 8–10 km altitude, presumably because land-based sources dominated their distribution during February through April 2001. The highest mean OCS and CS2levels (580 and 20 pptv, respectively, based on 2.5° × 2.5° latitude bins) were observed below 2 km near the coast of Asia, at latitudes between 25°N and 35°N, where urban Asian outflow was strongest. Ratios of OCS versus CO for continental SE Asia were much lower compared to Chinese and Japanese signatures and were strongly associated with biomass burning/biofuel emissions. We present a new inventory of anthropogenic Asian emissions (including biomass burning) for OCS and CS2 and compare it to emission estimates based on regional relationships of OCS and CS2 to CO and CO2. The OCS and CS2 results for the two methods compare well for continental SE Asia and Japan plus Korea and also for Chinese CS2 emissions. However, it appears that the inventory underestimates Chinese emissions of OCS by about 30–100%. This difference may be related to the fact that we did not include natural sources such as wetland emissions in our inventory, although the contributions from such sources are believed to be at a seasonal low during the study period. Uncertainties in OCS emissions from Chinese coal burning, which are poorly characterized, likely contribute to the discrepancy
Recommended from our members
Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment
Data obtained during the TRACE-P experiment is used to evaluate how well the CFORS/STEM-2K1 regional-scale chemical transport model is able to represent the aircraft observations. Thirty-one calculated trace gas and aerosol parameters are presented and compared to the in situ data. The regional model is shown to accurately predict many of the important features observed. The mean values of all the model parameters in the lowest 1 km are predicted within ±30% of the observed values. The correlation coefficients (R) for the meteorological parameters are found to be higher than those for the trace species. For example, for temperature, R \u3e 0.98. Among the trace species, ethane, propane, and ozone show the highest values (0.8 \u3c R \u3c 0.9), followed by CO, SO2, and NOy, NO and NO2 had the lowest values (R \u3c 0.4). Analyses of pollutant transport into the Yellow Sea by frontal events are presented and illustrate the complex nature of outflow. Biomass burning from SE Asia is transported in the warm conveyor belt at altitudes above ∼2 km and at latitudes below 30N. Outflow of pollution emitted along the east coast of China in the postfrontal regions is typically confined to the lower ∼2 km and results in high concentrations with plume-like features in the Yellow Sea. During these situations the model underpredicts CO and black carbon (among other species). An analysis of ozone production in this region is also presented. In and around the highly industrialized regions of East Asia, where fossil fuel usage dominates, ozone is NMHC-limited. South of ∼30-35N, ozone production is NOx-limited, reflecting the high NMHC/NOx ratios due to the large contributions to the emissions from biomass burning, biogenics sources, and biofuel usage in central China and SE Asia. Copyright 2003 by the American Geophysical Union
Recommended from our members
Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during PEM-West A
The DC-8 mission of September 27, 1991, was designed to sample air flowing into Typhoon Mireille in the boundary layer, air in the upper tropospheric eye region, and air emerging from the typhoon and ahead of the system, also in the upper troposphere. The objective was to find how a typhoon redistributes trace constituents in the West Pacific region and whether any such redistribution is important on the global scale. The boundary layer air (300 m), in a region to the SE of the eye, contained low mixing ratios of the tracer species O3, CO, C2H6, C2H2, C3H8, C6H6and CS2 but high values of dimethylsulfide (DMS). The eye region relative to the boundary layer, showed somewhat elevated levels of CO, substantially increased levels of O3, CS2 and all nonmethane hydrocarbons (NMHCs), and somewhat reduced levels of DMS. Ahead of the eye, CO and the NMHCs remained unchanged, O3 and CS2 showed a modest decrease, and DMS showed a substantial decrease. There was no evidence from lidar cross sections of ozone for the downward entrainment of stratospheric air into the eye region; these sections show that low ozone values were measured in the troposphere. The DMS data suggest substantial entrainment of boundary layer air into the system, particularly into the eye wall region. Estimates of the DMS sulphur flux between the boundary layer and the free troposphere, based on computations of velocity potential and divergent winds, gave values of about 69 μg S m−2 d−1 averaged over a 17.5° grid square encompassing the typhoon. A few hours after sampling with the DC-8, Mireille passed over Oki Island, just to the north of Japan, producing surface values of ozone of 5.5 ppbv. These O3 levels are consistent with the low tropospheric values found by lidar and are more typical of equatorial regions. We suggest that the central eye region may act like a Taylor column which has moved poleward from low latitudes. The high-altitude photochemical environment within Typhoon Mireille was found to be quite active as evidenced by significant levels of measured gas phase H2O2 and CH3OOH and model-computed levels of OH
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOₓ. Furthermore, based on model skill in predicting important photochemical species such as O₃, HCHO, OH, HO₂, and HNO₃, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOₓ/C₂H₂) fall within ∼25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
Situated solidarities and the practice of scholar-activism
Drawing on an analysis of an ongoing collaboration with rural peasant movements in Bangladesh, we explore the possibility of forging solidarity through practices of scholar-activism. In so doing, we consider the practice of reflexivity, reconsider forms of solidarity, and draw on the concept of convergence spaces as a way to envision sites of possibility. We mobilize the notion of situated solidarities to propose an alternative form of reflexive practice in scholarship. We then posit that there are six ‘practices’ that provide a useful schematic for thinking through the opportunities for the construction of these solidaritie
- …