28,674 research outputs found

    Educational Considerations, vol. 12(1) Full Issue

    Get PDF
    Educational Considerations, Vol. 12, no. 1, Winter 1985 - Full issu

    The Populations of Comet-Like Bodies in the Solar system

    Full text link
    A new classification scheme is introduced for comet-like bodies in the Solar system. It covers the traditional comets as well as the Centaurs and Edgeworth-Kuiper belt objects. At low inclinations, close encounters with planets often result in near-constant perihelion or aphelion distances, or in perihelion-aphelion interchanges, so the minor bodies can be labelled according to the planets predominantly controlling them at perihelion and aphelion. For example, a JN object has a perihelion under the control of Jupiter and aphelion under the control of Neptune, and so on. This provides 20 dynamically distinct categories of outer Solar system objects in the Jovian and trans-Jovian regions. The Tisserand parameter with respect to the planet controlling perihelion is also often roughly constant under orbital evolution. So, each category can be further sub-divided according to the Tisserand parameter. The dynamical evolution of comets, however, is dominated not by the planets nearest at perihelion or aphelion, but by the more massive Jupiter. The comets are separated into four categories -- Encke-type, short-period, intermediate and long-period -- according to aphelion distance. The Tisserand parameter categories now roughly correspond to the well-known Jupiter-family comets, transition-types and Halley-types. In this way, the nomenclature for the Centaurs and Edgeworth-Kuiper belt objects is based on, and consistent with, that for comets.Comment: MNRAS, in press, 11 pages, 6 figures (1 available as postscript, 5 as gif). Higher resolution figures available at http://www-thphys.physics.ox.ac.uk/users/WynEvans/preprints.pd

    Research-active therapists and therapy trainees: The need for continuity and clinical significance in our research

    Get PDF
    Mick Cooper is Professor of Counselling Psychology, as well as Acting Director of the Centre for Research in Psychological Wellbeing (CREW) at the University of Roehampton. Aside from being a research-active practitioner, with research interests in counselling with children and young people as well as humanistic, existential and relational approaches to therapy, Mick is co-developer of the pluralistic approach to therapeutic practice. He has published numerous research articles and texts including his latest book ‘Psychology at the Heart of Social Change: Developing a Progressive Vision for Society’. Mick kindly agreed to be interviewed by two of our editors (Deborah Bailey-Rodriguez & Eva Fragkiadaki) to discuss qualitative research within psychotherapy and counselling research, his own research journey as a therapist and to give us tips and pointers for therapy trainees and bridging the gap between research and therapeutic practice for our Special Issue

    Strapdown calibration and alignment study. Volume 1 - Development document Final report

    Get PDF
    Calibration and alignment techniques for inertial sensing uni

    Laboratory Measurements Of White Dwarf Photospheric Spectral Lines: H Beta

    Get PDF
    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of H beta and fit this line using different theoretical line profiles to diagnose electron density, n(e), and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n(e) similar to 4 to similar to 30 x 10(16) cm(-3) throughout a 120-ns evolution of our plasma. Also, we observe n(2) to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within similar to 55 ns to become consistent with LTE. This supports our electrontemperature determination of T-e similar to 1.3 eV (similar to 15,000 K) after this time. At n(e) greater than or similar to 10(17) cm(-3), we find that computer-simulation-based line-profile calculations provide better fits (lower reduced chi(2)) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.Laboratory Directed Research and Development programUnited States Department of Energy DE-AC04-94AL85000, DE-SC0010623National Science Foundation DGE-1110007Astronom
    • …
    corecore