20,173 research outputs found
Delocalization power of global unitary operations on quantum information
We investigate how originally localized two pieces of quantum information
represented by a tensor product of two unknown qudit states are delocalized by
performing two-qudit global unitary operations. To characterize the
delocalization power of global unitary operations on quantum information, we
analyze the necessary and sufficient condition to deterministically relocalize
one of the two pieces of quantum information to its original Hilbert space by
using only LOCC. We prove that this LOCC one-piece relocalization is possible
if and only if the global unitary operation is local unitary equivalent to a
controlled-unitary operation. The delocalization power and the entangling power
characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur
Non-adiabatic holonomic quantum computation
We develop a non-adiabatic generalization of holonomic quantum computation in
which high-speed universal quantum gates can be realized by using non-Abelian
geometric phases. We show how a set of non-adiabatic holonomic one- and
two-qubit gates can be implemented by utilizing optical transitions in a
generic three-level configuration. Our scheme opens up for universal
holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde
Understanding the value of events for families, and the impact upon their quality of life
This is an Accepted Manuscript of a book chapter published by Routledge in The Value of Events, on 9 May 2017. Under embargo until 9 November 2018. The published version is available online at: https://www.taylorfrancis.com/books/e/9781317193241.Drawing on previous conceptual and empirical research (Jepson & Stadler, in press) this chapter explores the contemporary issue of Quality of Life (QOL) and opens critical discourse to ascertain how festival and event attendance could potentially improve QOL for families, individuals and communities. The research presented here clearly has overlap with many other areas of investigation such as; leisure provision, constraints and participation levels (see Hinch et al 2005), or designing events to enhance social interaction (see Nordvall et al, 2014). Our focus here though is upon family orientated festivals and events. Our discussions of value are set in the context of what events mean to families and the potential family socialisation value they could gain from attending them which in turn has the potential to enhance a family’s overall QOL.Final Accepted Versio
Thermally induced magnetic relaxation in square artificial spin ice
The properties of natural and artificial assemblies of interacting elements,
ranging from Quarks to Galaxies, are at the heart of Physics. The collective
response and dynamics of such assemblies are dictated by the intrinsic
dynamical properties of the building blocks, the nature of their interactions
and topological constraints. Here we report on the relaxation dynamics of the
magnetization of artificial assemblies of mesoscopic spins. In our model
nano-magnetic system - square artificial spin ice - we are able to control the
geometrical arrangement and interaction strength between the magnetically
interacting building blocks by means of nano-lithography. Using time resolved
magnetometry we show that the relaxation process can be described using the
Kohlrausch law and that the extracted temperature dependent relaxation times of
the assemblies follow the Vogel-Fulcher law. The results provide insight into
the relaxation dynamics of mesoscopic nano-magnetic model systems, with
adjustable energy and time scales, and demonstrates that these can serve as an
ideal playground for the studies of collective dynamics and relaxations.Comment: 15 pages, 5 figure
Multi Mode Interferometer for Guided Matter Waves
We describe the fundamental features of an interferometer for guided matter
waves based on Y-beam splitters and show that, in a quasi two-dimensional
regime, such a device exhibits high contrast fringes even in a multi mode
regime and fed from a thermal source.Comment: Final version (accepted to PRL
Gravitational wave asteroseismology with fast rotating neutron stars
We investigate damping and growth times of the f-mode for rapidly rotating
stars and a variety of different polytropic equations of state in the Cowling
approximation. We discuss the differences in the eigenfunctions of co- and
counterrotating modes and compute the damping times of the f-mode for several
EoS and all rotation rates up to the Kepler-limit. This is the first study of
the damping/growth time of this type of oscillations for fast rotating neutron
stars in a general relativistic framework. We use these frequencies and
damping/growth times to create robust empirical formulae which can be used for
gravitational wave asteroseismology. The estimation of the damping/growth time
is based on the quadrupole formula and our results agree very well with
Newtonian ones in the appropriate limit.Comment: 15 pages, 8 figures, version accepted for publication in PhysRev
Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics
A new formula to calculate the transport coefficients of the causal
dissipative hydrodynamics is derived by using the projection operator method
(Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This
is an extension of the Green-Kubo-Nakano (GKN) formula to the case of
non-Newtonian fluids, which is the essential factor to preserve the
relativistic causality in relativistic dissipative hydrodynamics. This formula
is the generalization of the GKN formula in the sense that it can reproduce the
GKN formula in a certain limit. In this work, we extend the previous work so as
to apply to more general situations.Comment: 15 pages, no figure. Discussions are added in the concluding remarks.
Accepted for publication in Phys. Rev.
Linearized gravity and gauge conditions
In this paper we consider the field equations for linearized gravity and
other integer spin fields on the Kerr spacetime, and more generally on
spacetimes of Petrov type D. We give a derivation, using the GHP formalism, of
decoupled field equations for the linearized Weyl scalars for all spin weights
and identify the gauge source functions occuring in these. For the spin weight
0 Weyl scalar, imposing a generalized harmonic coordinate gauge yields a
generalization of the Regge-Wheeler equation. Specializing to the Schwarzschild
case, we derive the gauge invariant Regge-Wheeler and Zerilli equation directly
from the equation for the spin 0 scalar.Comment: 24 pages, corresponds to published versio
A canine model of irreversible urethral sphincter insufficiency
OBJECTIVE To develop a canine model of external urinary sphincter insufficiency by creating irreversible damage to the sphincter, because there is a need for a reliable and reproducible large animal model for the study of stress urinary incontinence (SUI) caused by deficient sphincter function. MATERIALS AND METHODS About a quarter of the total external sphincter muscle was removed microsurgically from seven female dogs; three age-matched dogs served as normal controls. The dogs had standard urodynamic and radiographic studies before and at 1, 2, 3, 4 and 7 months after surgery. Three dogs were killed at 4 months and four at 7 months after surgery for tissue analyses. RESULTS The interventions produced a consistent outcome. Urodynamic studies showed a significant and sustained decrease in sphincter function, which included a static urethral pressure profile, stress urethral profile and detrusor leak-point pressure. Furthermore, in vivo pudendal nerve stimulation and organ-bath studies of the retrieved tissue strips confirmed the loss of sphincter tissue function. Histologically, absence of functional sphincter muscle was evident in the damaged sphincter region. CONCLUSIONS These results show that a reliable and reproducible canine model of irreversible sphincter insufficiency can be created by microsurgical removal of sphincter muscle tissue. This model of external sphincter insufficiency could be used for evaluating methods (e.g. cell therapies) for treating SUI
Density functional theory for freezing transition of vortex-line liquid with periodic layer pinning
By the density functional theory for crystallization, it is shown that for
vortex lines in an underlying layered structure a smectic phase with period m=2
can be stabilized by strong layer pinning. The freezing of vortex liquid is
then two-step, a second-order liquid-smectic transition and a first-order
smectic-lattice transition. DFT also indicates that a direct, first-order
liquid-lattice transition preempts the smectic order with m>2 irrespectively of
the pinning strength. Possible H-T phase diagrams are mapped out. Implications
of the DFT results to the interlayer Josephson vortex system in high-Tc
cuprates are given.Comment: 4 pages, 5 figures, references adde
- …
