51 research outputs found
Bioinformatics tools in predictive ecology: Applications to fisheries
This article is made available throught the Brunel Open Access Publishing Fund - Copygith @ 2012 Tucker et al.There has been a huge effort in the advancement of analytical techniques for molecular biological data over the past decade. This has led to many novel algorithms that are specialized to deal with data associated with biological phenomena, such as gene expression and protein interactions. In contrast, ecological data analysis has remained focused to some degree on off-the-shelf statistical techniques though this is starting to change with the adoption of state-of-the-art methods, where few assumptions can be made about the data and a more explorative approach is required, for example, through the use of Bayesian networks. In this paper, some novel bioinformatics tools for microarray data are discussed along with their ‘crossover potential’ with an application to fisheries data. In particular, a focus is made on the development of models that identify functionally equivalent species in different fish communities with the aim of predicting functional collapse
Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance
Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales
Aboveground Herbivory Shapes the Biomass Distribution and Flux of Soil Invertebrates
Contains fulltext :
72659.pdf ( ) (Open Access)Background Living soil invertebrates provide a universal currency for quality that integrates physical and chemical variables with biogeography as the invertebrates reflect their habitat and most ecological changes occurring therein. The specific goal was the identification of “reference” states for soil sustainability and ecosystem functioning in grazed vs. ungrazed sites.
Methodology/Principal Findings Bacterial cells were counted by fluorescent staining and combined direct microscopy and automatic image analysis; invertebrates (nematodes, mites, insects, oligochaetes) were sampled and their body size measured individually to allow allometric scaling. Numerical allometry analyses food webs by a direct comparison of weight averages of components and thus might characterize the detrital soil food webs of our 135 sites regardless of taxonomy. Sharp differences in the frequency distributions are shown. Overall higher biomasses of invertebrates occur in grasslands, and all larger soil organisms differed remarkably.
Conclusions/Significance Strong statistical evidence supports a hypothesis explaining from an allometric perspective how the faunal biomass distribution and the energetic flux are affected by livestock, nutrient availability and land use. Our aim is to propose faunal biomass flux and biomass distribution as quantitative descriptors of soil community composition and function, and to illustrate the application of these allometric indicators to soil systems.7 p
Dome patterns in pelagic size spectra reveal strong trophic cascades
In ecological communities, especially the pelagic zones of aquatic ecosystems, certain bodysize ranges are often over-represented compared to others. Community size spectra, the distributions of community biomass over the logarithmic body-mass axis, tend to exhibit regularly spaced local maxima, called "domes", separated by steep troughs. Contrasting established theory, we explain these dome patterns as manifestations of top-down trophic cascades along aquatic food chains. Compiling high quality size-spectrum data and comparing these with a size-spectrum model introduced in this study, we test this theory and develop a detailed picture of the mechanisms by which bottom-up and top-down effects interact to generate dome patterns. Results imply that strong top-down trophic cascades are common in freshwater communities, much more than hitherto demonstrated, and may arise in nutrient rich marine systems as well. Transferring insights from the general theory of nonlinear pattern formation to domes patterns, we provide new interpretations of past lake-manipulation experiments
Role of predation by harp seals Pagophilus groenlandicus in the collapse and non-recovery of northern Gulf of St. Lawrence cod Gadus morhua
A statistical catch-at-age model was developed to assess the effects of predation by the northwest Atlantic harp seal population on northern Gulf of St. Lawrence cod by estimating the relative importance of different sources of mortality that affected the stock during a period of collapse and non-recovery. Cod recruitment at age 1 is modeled via a non-linear stock-recruitment relationship based on total egg production and accounts for changes in female length-at-maturity and cod condition. Natural mortality other than seal predation also depends on cod condition used as an integrative index of changes in environmental conditions. The linkage between seals and cod is modeled through a multi-age functional response that was derived from the reconstruction of the seal diet using morphometric relationships and stomach contents of more than 200 seals collected between 1998 and 2001. The model was fitted following a maximum likelihood estimation approach to a scientific survey abundance index (1984-2006). Model results show that the collapse of the northern Gulf of St. Lawrence cod stock was mainly due to the combination of high fishing mortality rates and poor environmental conditions in the early to mid-1990s contributing to the current state of recruitment overfishing. The increase in harp seal abundance during 1984-2006 was reflected by an increase in predation mortality for the young cod age-groups targeted by seals. Although current levels of predation mortality affect cod spawning biomass, the lack of recovery of the NGSL cod stock seems mainly due to the situation of very poor recruitment
Barriers to implementation of dynamic reference points in fisheries management.
Fish populations are dynamic; their productivity depends on the environment, predator and prey interactions, and fisheries
harvest rates. Failure to account for these factors in fisheries science and management can lead to a misestimation of stock
dynamics and productivity, resulting in overexploitation or forgone fisheries yield. Using an online survey, we asked fisheries
scientists, industry stakeholders, Indigenous partners, and non-governmental organizations whether changing ecosystem productivity
was a problem in their experience, how often dynamic approaches to fisheries reference points have been adopted,
what methods had been used, and what fisheries they had been applied to. Changing fisheries or ecosystem productivity was
reported as an issue by 96% of respondents; however, 74% of respondents said they had never seen dynamic reference points
implemented, 16% said in very few instances, while 10% said frequently. The most common barriers to implementation of dynamic
approaches in fisheries management were institutional inertia and uncertainty about whether a change in productivity
was lasting. We discuss trade-offs between fisheries management performance and stability
- …