940 research outputs found
"Cost Effective Conservation Planning: Twenty Lessons from Economics"
Economists advocate that the billions of public dollars spent on conservation should be allocated to achieve the largest possible social benefit. This is what we term “cost-effective conservation”-- a process that incorporates both benefits and costs that are measured with money. This controversial proposition has been poorly understood and not implemented by conservation planners. Drawing from evidence from the largest conservation programs in the United States, this paper seeks to improve the communication between economists and planners and overcome resistance to cost-effective conservation by addressing the open questions that likely drive skepticism among non-economists and by identifying best practices for project selection. We first delineate project-selection strategies and compare them to optimization. Then we synthesize the body of established research findings from economics into 20 practical lessons. Based on theory, policy considerations, and empirical evidence, these lessons illustrate the potential gains from improving practices related to cost-effective selection and also address how to overcome landowner-incentive challenges that face programs.conservation planning, cost-effectiveness, nonmarket valuation, benefit cost targeting, optimization, prioritization
Inelastic quantum transport: the self-consistent Born approximation and correlated electron-ion dynamics
A dynamical method for inelastic transport simulations in nanostructures is
compared with a steady-state method based on non-equilibrium Green's functions.
A simplified form of the dynamical method produces, in the steady state in the
weak-coupling limit, effective self-energies analogous to those in the Born
Approximation due to electron-phonon coupling. The two methods are then
compared numerically on a resonant system consisting of a linear trimer weakly
embedded between metal electrodes. This system exhibits enhanced heating at
high biases and long phonon equilibration times. Despite the differences in
their formulation, the static and dynamical methods capture local
current-induced heating and inelastic corrections to the current with good
agreement over a wide range of conditions, except in the limit of very high
vibrational excitations, where differences begin to emerge.Comment: 12 pages, 7 figure
A discrete time-dependent method for metastable atoms in intense fields
The full-dimensional time-dependent Schrodinger equation for the electronic
dynamics of single-electron systems in intense external fields is solved
directly using a discrete method.
Our approach combines the finite-difference and Lagrange mesh methods. The
method is applied to calculate the quasienergies and ionization probabilities
of atomic and molecular systems in intense static and dynamic electric fields.
The gauge invariance and accuracy of the method is established. Applications to
multiphoton ionization of positronium and hydrogen atoms and molecules are
presented. At very high intensity above saturation threshold, we extend the
method using a scaling technique to estimate the quasienergies of metastable
states of the hydrogen molecular ion. The results are in good agreement with
recent experiments.Comment: 10 pages, 9 figure, 4 table
On the Whitehead spectrum of the circle
The seminal work of Waldhausen, Farrell and Jones, Igusa, and Weiss and
Williams shows that the homotopy groups in low degrees of the space of
homeomorphisms of a closed Riemannian manifold of negative sectional curvature
can be expressed as a functor of the fundamental group of the manifold. To
determine this functor, however, it remains to determine the homotopy groups of
the topological Whitehead spectrum of the circle. The cyclotomic trace of B
okstedt, Hsiang, and Madsen and a theorem of Dundas, in turn, lead to an
expression for these homotopy groups in terms of the equivariant homotopy
groups of the homotopy fiber of the map from the topological Hochschild
T-spectrum of the sphere spectrum to that of the ring of integers induced by
the Hurewicz map. We evaluate the latter homotopy groups, and hence, the
homotopy groups of the topological Whitehead spectrum of the circle in low
degrees. The result extends earlier work by Anderson and Hsiang and by Igusa
and complements recent work by Grunewald, Klein, and Macko.Comment: 52 page
Water induced sediment levitation enhances downslope transport on Mars
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought
Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum
Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable
The beginning of time? Evidence for catastrophic drought in Baringo in the early nineteenth century
New developments in the collection of palaeo-data over the past two decades have transformed our understanding of climate and environmental history in eastern Africa. This article utilises instrumental and proxy evidence of historical lake-level fluctuations from Baringo and Bogoria, along with other Rift Valley lakes, to document the timing and magnitude of hydroclimate variability at decadal to century time scales since 1750. These data allow us to construct a record of past climate variation not only for the Baringo basin proper, but also across a sizable portion of central and northern Kenya. This record is then set alongside historical evidence, from oral histories gathered amongst the peoples of northern Kenya and the Rift Valley and from contemporary observations recorded by travellers through the region, to offer a reinterpretation of human activity and its relationship to environmental history in the nineteenth century. The results reveal strong evidence of a catastrophic drought in the early nineteenth century, the effects of which radically alters our historical understanding of the character of settlement, mobility and identity within the Baringo–Bogoria basin
Sherlock Holmes and the Nazis: Fifth Columnists and the People’s War in Anglo-American Cinema, 1942-1943
- …
