163 research outputs found

    Rare earth magnetism and ferroelectricity in RMnO3

    Get PDF
    Magnetic rare earths R have been proven to have a significant effect on the multiferroic properties of the orthorhombic manganites RMnO3. A re-examination of previous results from synchrotron based x-ray scattering experiments suggests that symmetric exchange striction between neighboring R and Mn ions may account for the enhancement of the ferroelectric polarization in DyMnO3 as well as the magnetic-field induced ferroelectricity in GdMnO3. In general, adding a second magnetic species to a multiferroic material may be a route to enhance its ferroelectric properties.Comment: Contribution to ICM 2009; accepted for publication in Journal of Physics: Conference Serie

    Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in orthorhombic DyMnO3

    Get PDF
    Synchrotron x-ray diffraction and resonant magnetic scattering experiments on single crystal DyMnO3 have been carried out between 4 and 40 K. Below TN(Dy) = 5K, the Dy magnetic moments order in a commensurate structure with propagation vector 0.5 b*. Simultaneous with the Dy magnetic ordering, an incommensurate lattice modulation with propagation vector 0.905 b* evolves while the original Mn induced modulation is suppressed and shifts from 0.78 b* to 0.81 b*. This points to a strong interference of Mn and Dy induced structural distortions in DyMnO3 besides a magnetic coupling between the Mn and Dy magnetic moments.Comment: submitted to Phys. Rev. B Rapid Communication

    Enhanced ferroelectric polarization by induced Dy spin-order in multiferroic DyMnO3

    Get PDF
    Neutron powder diffraction and single crystal x-ray resonant magnetic scattering measurements suggest that Dy plays an active role in enhancing the ferroelectric polarization in multiferroic DyMnO3 above TNDy = 6.5 K. We observe the evolution of an incommensurate ordering of Dy moments with the same periodicity as the Mn spiral ordering. It closely tracks the evolution of the ferroelectric polarization which reaches a maximum value of 0.2 muC/m^2. Below TNDy, where Dy spins order commensurately, the polarization decreases to values similar for those of TbMnO3

    Transition from a phase-segregated state to single-phase incommensurate sodium ordering in Na_xCoO_2 with x \approx 0.53

    Get PDF
    Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.Comment: Corrected/improved versio

    An outer measure on a commutative ring

    No full text
    We show how to produce a reasonable outer measure on a commutative ring from a given measure on a family of prime ideals of this ring. We provide a few examples and prove several properties of such outer measures

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Coupling of frustrated Ising spins to magnetic cycloid in multiferroic TbMnO3

    Get PDF
    We report on diffraction measurements on multiferroic TbMnO3 which demonstrate that the Tb- and Mn-magnetic orders are coupled below the ferroelectric transition TFE = 28 K. For T < TFE the magnetic propagation vectors (tau) for Tb and Mn are locked so that tauTb = tauMn, while below TNTb = 7 K we find that tauTb and tauMn lock-in to rational values of 3/7 b* and 2/7 b*, respectively, and obey the relation 3tauTb - tauMn = 1. We explain this novel matching of wave vectors within the frustrated ANNNI model coupled to a periodic external field produced by the Mn-spin order. The tauTb = tauMn behavior is recovered when Tb magnetization is small, while the tauTb = 3/7 regime is stabilized at low temperatures by a peculiar arrangement of domain walls in the ordered state of Ising-like Tb spins.Comment: 5 pages, 3 figure

    Origin of the reduced exchange bias in epitaxial FeNi(111)/CoO(111) bilayer

    Full text link
    We have employed Soft and Hard X-ray Resonant Magnetic Scattering and Polarised Neutron Diffraction to study the magnetic interface and the bulk antiferromagnetic domain state of the archetypal epitaxial Ni81_{81}Fe19_{19}(111)/CoO(111) exchange biased bilayer. The combination of these scattering tools provides unprecedented detailed insights into the still incomplete understanding of some key manifestations of the exchange bias effect. We show that the several orders of magnitude difference between the expected and measured value of exchange bias field is caused by an almost anisotropic in-plane orientation of antiferromagnetic domains. Irreversible changes of their configuration lead to a training effect. This is directly seen as a change in the magnetic half order Bragg peaks after magnetization reversal. A 30 nm size of antiferromagnetic domains is extracted from the width the (1/2 1/2 1/2) antiferromagnetic magnetic peak measured both by neutron and x-ray scattering. A reduced blocking temperature as compared to the measured antiferromagnetic ordering temperature clearly corresponds to the blocking of antiferromagnetic domains. Moreover, an excellent correlation between the size of the antiferromagnetic domains, exchange bias field and frozen-in spin ratio is found, providing a comprehensive understanding of the origin of exchange bias in epitaxial systems.Comment: 8 pages, 5 figures, submitte

    A complementary neutron and anomalous x-ray diffraction study

    Get PDF
    Distinguishing the scattering contributions of isoelectronic atomic species by means of conventional x-ray- and/or electron diffraction techniques is a difficult task. Such a problem occurs when determining the crystal structure of compounds containing different types of atoms with equal number of electrons. We propose a new structural model of Cu(InxGa1−x)3Se5 which is valid for the entire compositional range of the CuIn3Se5–CuGa3Se5 solid solution. Our model is based on neutron and anomalous x-ray diffraction experiments. These complementary techniques allow the separation of scattering contributions of the isoelectronic species Cu+ and Ga3+, contributing nearly identically in monoenergetic x-ray diffraction experiments. We have found that CuIII3Se5 (III=In,Ga) in its room temperature near-equilibrium modification exhibits a modified stannite structure (space group I4¯2m). Different occupation factors of the species involved, Cu+, In3+, Ga3+, and vacancies have been found at three different cationic positions of the structure (Wyckoff sites 2a, 2b, and 4d) depending on the composition of the compound. Significantly, Cu+ does not occupy the 2b site for the In-free compound, but does for the In-containing case. Structural parameters, including lattice constants, tetragonal distortions, and occupation factors are given for samples covering the entire range of the CuIn3Se5–CuGa3Se5 solid solution. At the light of the result, the denotation of Cu-poor 1:3:5 compounds as chalcopyrite-related materials is only valid in reference to their composition

    Nitridation of InP(1 0 0) surface studied by synchrotron radiation

    Get PDF
    The nitridation of InP(1 0 0) surfaces has been studied using synchrotron radiation photoemission. The samples were chemically cleaned and then ion bombarded, which cleaned the surface and also induced the formation of metallic indium droplets. The nitridation with a Glow Discharge Cell (GDS) produced indium nitride by reaction with these indium clusters. We used the In 4d and P 2p core levels to monitor the chemical state of the surface and the coverage of the species present. We observed the creation of In-N and P-N bonds while the In-In metallic bonds decrease which confirm the reaction between indium clusters and nitrogen species. A theoretical model based on stacked layers allows us to assert that almost two monolayers of indium nitride are produced. The effect of annealing on the nitridated layers at 450 ^\circC has also been analysed. It appears that this system is stable up to this temperature, well above the congruent evaporation temperature (370 ^\circC) of clean InP(1 0 0): no increase of metallic indium bonds due to decomposition of the substrate is detected as shown in previous works [L. Bideux, Y. Ould-Metidji, B. Gruzza, V. Matolin, Surf. Interface Anal. 34 (2002) 712] studying the InP(1 0 0) surfaces
    corecore