836 research outputs found
Circuit QED and sudden phase switching in a superconducting qubit array
Superconducting qubits connected in an array can form quantum many-body
systems such as the quantum Ising model. By coupling the qubits to a
superconducting resonator, the combined system forms a circuit QED system.
Here, we study the nonlinear behavior in the many-body state of the qubit array
using a semiclassical approach. We show that sudden switchings as well as a
bistable regime between the ferromagnetic phase and the paramagnetic phase can
be observed in the qubit array. A superconducting circuit to implement this
system is presented with realistic parameters .Comment: 4 pages, 3 figures, submitted for publication
Marginally unstable Holmboe modes
Marginally unstable Holmboe modes for smooth density and velocity profiles
are studied. For a large family of flows and stratification that exhibit
Holmboe instability, we show that the modes with phase velocity equal to the
maximum or the minimum velocity of the shear are marginally unstable. This
allows us to determine the critical value of the control parameter R
(expressing the ratio of the velocity variation length scale to the density
variation length scale) that Holmboe instability appears R=2. We then examine
systems for which the parameter R is very close to this critical value. For
this case we derive an analytical expression for the dispersion relation of the
complex phase speed c(k) in the unstable region. The growth rate and the width
of the region of unstable wave numbers has a very strong (exponential)
dependence on the deviation of R from the critical value. Two specific examples
are examined and the implications of the results are discussed.Comment: Submitted to Physics of Fluid
A pulsed atomic soliton laser
It is shown that simultaneously changing the scattering length of an
elongated, harmonically trapped Bose-Einstein condensate from positive to
negative and inverting the axial portion of the trap, so that it becomes
expulsive, results in a train of self-coherent solitonic pulses. Each pulse is
itself a non-dispersive attractive Bose-Einstein condensate that rapidly
self-cools. The axial trap functions as a waveguide. The solitons can be made
robustly stable with the right choice of trap geometry, number of atoms, and
interaction strength. Theoretical and numerical evidence suggests that such a
pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure
Solitons in a trapped spin-1 atomic condensate
We numerically investigate a particular type of spin solitons inside a
trapped atomic spin-1 Bose-Einstein condensate (BEC) with ferromagnetic
interactions. Within the mean field theory approximation, our study of the
solitonic dynamics shows that the solitonic wave function, its center of mass
motion, and the local spin evolutions are stable and are intimately related to
the domain structures studied recently in spin-1 Rb condensates. We
discuss a rotating reference frame wherein the dynamics of the solitonic local
spatial spin distribution become time independent.Comment: 8 pages, 8 color eps figure
Coupled currents in cosmic strings
We first examine the microstructure of a cosmic string endowed with two
simple Abelian currents. This microstructure depends on two state parameters.
We then provide the macroscopic description of such a string and show that it
depends on an additional Lorentz-invariant state parameter that relates the two
currents. We find that in most of the parameter space, the two-current string
is essentially equivalent to the single current-carrying string, i.e., only one
field condenses onto the defect. In the regions where two currents are present,
we find that as far as stability is concerned, one can approximate the dynamics
with good accuracy using an analytic model based on either a logarithmic (on
the electric side, i.e., for timelike currents) or a rational (on the magnetic
side, i.e., for spacelike currents) worldsheet Lagrangian.Comment: 25 pages, 9 figure
Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices
This paper addresses the dynamical coupling of the ocean's surface and the ocean's interior. In particular, we investigate the dynamics of an oceanic surface jet, and its interaction with vortices at depth. The jet is induced by buoyancy (density) anomalies at the surface. We first focus on the jet alone. The linear stability indicates there are two modes of instability: the sinuous and the varicose modes. When a vortex in present below the jet, it interacts with it. The velocity field induced by the vortex perturbs the jet and triggers its destabilisation. The jet also influences the vortex by pushing it under a region of co-operative shear. Strong jets may also partially shear out the vortex. We also investigate the interaction between a surface jet and a vortex dipole in the interior. Again, strong jets may partially shear out the vortex structure. The jet also modifies the trajectory of the dipole. Dipoles travelling towards the jet at shallow incidence angles may be reflected by the jet. Vortices travelling at moderate incidence angles normally cross below the jet. This is related to the displacement of the two vortices of the dipole by the shear induced by the jet. Intense jets may also destabilise early and form streets of billows. These billows can pair with the vortices and separate the dipole.PostprintPeer reviewe
Experimental evidence of solitary wave interaction in Hertzian chains
We study experimentally the interaction between two solitary waves that
approach one to another in a linear chain of spheres interacting via the Hertz
potential. When these counter propagating waves collide, they cross each other
and a phase shift respect to the noninteracting waves is introduced, as a
result of the nonlinear interaction potential. This observation is well
reproduced by our numerical simulations and it is shown to be independent of
viscoelastic dissipation at the beads contact. In addition, when the collision
of equal amplitude and synchronized counter propagating waves takes place, we
observe that two secondary solitary waves emerge from the interacting region.
The amplitude of secondary solitary waves is proportional to the amplitude of
incident waves. However, secondary solitary waves are stronger when the
collision occurs at the middle contact in chains with even number of beads.
Although numerical simulations correctly predict the existence of these waves,
experiments show that their respective amplitude are significantly larger than
predicted. We attribute this discrepancy to the rolling friction at the beads
contacts during solitary wave propagation
Transition to turbulence in particulate pipe flow
We investigate experimentally the influence of suspended particles on the
transition to turbulence. The particles are monodisperse and neutrally-buoyant
with the liquid. The role of the particles on the transition depends both upon
the pipe to particle diameter ratios and the concentration. For large
pipe-to-particle diameter ratios the transition is delayed while it is lowered
for small ratios. A scaling is proposed to collapse the departure from the
critical Reynolds number for pure fluid as a function of concentration into a
single master curve.Comment: 4 pages, 4 figure
The Universal Gaussian in Soliton Tails
We show that in a large class of equations, solitons formed from generic
initial conditions do not have infinitely long exponential tails, but are
truncated by a region of Gaussian decay. This phenomenon makes it possible to
treat solitons as localized, individual objects. For the case of the KdV
equation, we show how the Gaussian decay emerges in the inverse scattering
formalism.Comment: 4 pages, 2 figures, revtex with eps
- …
