112 research outputs found
Longitudinal Study on the Effect of Season and Weather on the Behaviour of Domestic Cats (Felis catus)
fals
The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.fals
Review and update of a Nutrient Transfer model used for estimating nitrous oxide emissions from complex grazed landscapes, and implications for nationwide accounting
In New Zealand, nitrous oxide emissions from grazed hill pastures are estimated using different emission factors for urine and dung deposited on different slope classes. Allocation of urine and dung to each slope class needs to consider the distribution of slope classes within a landscape and animal behavior. The Nutrient Transfer (NT) model has recently been incorporated into the New Zealand Agricultural GHG Inventory Model to account for the allocation of excretal nitrogen (N) to each slope class. In this study, the predictive ability of the transfer function within the NT model was explored using urine deposition datasets collected with urine sensor and GPS tracker technology. Data were collected from three paddocks that had areas in low (24°). The NT model showed a good overall predictive ability for two of the three datasets. However, if the urine emission factors (% of urine N emitted as N2 O-N) were to be further disaggregated to assess emissions from all three slope classes or slope gradients, more precise data would be required to accurately represent the range of landscapes found on farms. We have identified the need for more geospatial data on urine deposition and animal location for farms that are topographically out of the range used to develop the model. These new datasets would provide livestock urine deposition on a more continuous basis across slopes (as opposed to broad ranges), a unique opportunity to improve the performance of the NT model.fals
Telomerase mediates lymphocyte proliferation but not the atherosclerosis-suppressive potential of regulatory T-cells
Objective: Atherosclerosis is an age-related disease characterised by systemic oxidative stress and low-grade inflammation. The role of telomerase and telomere length in atherogenesis remains contentious. Short telomeres of peripheral leukocytes are predictive for coronary artery disease. Conversely, attenuated telomerase has been demonstrated to be protective for atherosclerosis. Hence a potential causative role of telomerase in atherogenesis is critically debated.
Approach and Results: In this study we used multiple mouse models to investigate the regulation of telomerase under oxidative stress as well as its impact on atherogenesis in vitro and in vivo. Using primary lymphocytes and myeloid cell cultures we demonstrate that cultivation under hyperoxic conditions induced oxidative stress resulting in chronic activation of CD4+ cells and significantly reduced CD4+ T-cell proliferation. The latter was telomerase dependent, as oxidative stress had no effect on the proliferation of primary lymphocytes isolated from telomerase-knock-out mice. In contrast, myeloid cell proliferation was unaffected by oxidative stress nor reliant on telomerase. Telomerase reverse transcriptase (TERT) deficiency had no effect on Treg numbers in vivo or suppressive function ex vivo. Adoptive transfer of TERT-/- Tregs into Rag2-/- ApoE-/- double knock out mice demonstrated that telomerase function was not required for the ability of Tregs to protect against atherosclerosis. However, telomere length was critical for Treg function.
Conclusions: Telomerase contributes to lymphocyte proliferation but plays no major role in Treg function, provided that telomere length is not critically short. We suggest that oxidative stress may contribute to atherosclerosis via suppression of telomerase and acceleration of telomere attrition in Tregs.This study was supported, in part, by British Heart Foundation Project
Grants PG/15/85/31744 and PG/12/47/29681 (www.BHF.org.uk) as
well as the Newcastle Healthcare Charity (www.newcastle-hospitals.
org.uk/patient-guides/charity-matters-at-newcastle-hospitals_charitable-
funds.aspx). N.M. Al Zhrany was funded by a stipend from the
Government of Saudi Arabia
Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation
Plant traits and associated ecological data from Afromontane grasslands of Maloti-Drakensberg, South Africa
The Afromontane region harbors ancient grasslands with high levels of endemism, now under threat from land-use change, biological invasions and encroachment, and climate warming. As part of an international Plant Functional Traits Course we collected comprehensive trait data in five sites along an elevation gradient from 2,000–2,800 m a.s.l. and in a climate warming experiment at 3,064 m a.s.l. in the Maloti-Drakensberg, South Africa. We sampled 24,405 aboveground and 94 root trait measurements from 171 vascular plant taxa paired with 11 other datasets reflecting vegetation and structure, leaf and ecosystem carbon and water fluxes, leaf hyperspectral reflectance, and microclimatic and environmental data. Our data provide the first recorded trait data for 47 vascular plant species and more than double the trait data coverage from the Maloti-Drakensberg (106% increase). This study offers insights into plant and ecosystem functioning, provides a baseline for assessing impacts of environmental change, builds local competence, and aligns with similar data from China, Svalbard, Peru, and Norway
Electrophysiological correlates of selective attention: A lifespan comparison
<p>Abstract</p> <p>Background</p> <p>To study how event-related brain potentials (ERPs) and underlying cortical mechanisms of selective attention change from childhood to old age, we investigated lifespan age differences in ERPs during an auditory oddball task in four age groups including 24 younger children (9–10 years), 28 older children (11–12 years), 31 younger adults (18–25), and 28 older adults (63–74 years). In the Unattend condition, participants were asked to simply listen to the tones. In the Attend condition, participants were asked to count the deviant stimuli. Five primary ERP components (N1, P2, N2, P3 and N3) were extracted for deviant stimuli under Attend conditions for lifespan comparison. Furthermore, Mismatch Negativity (MMN) and Late Discriminative Negativity (LDN) were computed as difference waves between deviant and standard tones, whereas Early and Late Processing Negativity (EPN and LPN) were calculated as difference waves between tones processed under Attend and Unattend conditions. These four secondary ERP-derived measures were taken as indicators for change detection (MMN and LDN) and selective attention (EPN and LPN), respectively. To examine lifespan age differences, the derived difference-wave components for attended (MMN and LDN) and deviant (EPN and LPN) stimuli were specifically compared across the four age groups.</p> <p>Results</p> <p>Both primary and secondary ERP components showed age-related differences in peak amplitude, peak latency, and topological distribution. The P2 amplitude was higher in adults compared to children, whereas N2 showed the opposite effect. P3 peak amplitude was higher in older children and younger adults than in older adults. The amplitudes of N3, LDN, and LPN were higher in older children compared with both of the adult groups. In addition, both P3 and N3 peak latencies were significantly longer in older than in younger adults. Interestingly, in the young adult sample P3 peak amplitude correlated positively and P3 peak latency correlated negatively with performance in the Identical Picture test, a marker measure of fluid intelligence.</p> <p>Conclusion</p> <p>The present findings suggest that patterns of event-related brain potentials are highly malleable within individuals and undergo profound reorganization from childhood to adulthood and old age.</p
A Melodic Contour Repeatedly Experienced by Human Near-Term Fetuses Elicits a Profound Cardiac Reaction One Month after Birth
Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth.Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35(th), 36(th), and 37(th) weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants.Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants 'auditory processing' or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3-4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed
Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
- …
