160 research outputs found

    The Effect of Vitamin C on HeLa Cell Proliferation

    Get PDF
    In this study, we investigated the impact of vitamin C on cervical cancer cells at varying concentrations. After adding vitamin C reagent to plated HeLa cells, we performed cytotoxicity assays to measure cell viability. We hypothesized that higher concentrations of vitamin C would lead to lower cell viability, as vitamin C is predicted to cause cell death in cancer cells. Our results indicated that higher concentrations of vitamin C do not necessarily correlate with lower cell viability of cervical cancer cells

    Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots

    Get PDF
    Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well established as promising candidates for quantum optics and quantum information processing, but they are randomly positioned. Site-controlled quantum dots, on the other hand, are grown in pre-defined locations but have not yet been sufficiently developed to be used as a platform for quantum information processing. In this paper, we demonstrate all-optical ultrafast complete coherent control of a qubit formed by the single-spin/trion states of a charged site-controlled nanowire quantum dot. Our results show that site-controlled quantum dots in nanowires are promising hosts of charged-exciton qubits and that these qubits can be cleanly manipulated in the same fashion as has been demonstrated in randomly positioned quantum dot samples. Our findings suggest that many of the related excitonic qubit experiments that have been performed over the past 15 years may work well in the more scalable, site-controlled systems, making them very promising for the realization of quantum hardware

    Spectrally reconfigurable quantum emitters enabled by optimized fast modulation

    Full text link
    The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.Comment: 9 pages, 6 figures; Supplementary Informatio

    Preventing Falls in Older Californians: State of the Art

    Get PDF
    In February 2003, the Foundation convened over 150 leaders in academic, legislative, community-based services, consumer advocates, aging network, housing, public health, public safety, and other leaders who worked for two days on a statewide blueprint on fall prevention.  In preparation for the convening, a Preconference White Paper was created and used to build the blueprint.  The California Blueprint describes state-of-the-art approaches to reducing the risks of falls, and the challenges to implementing fall prevention in California.  One of the top recommendations from this blueprint was the creation of a coordination center that could serve as a statewide resource and lead efforts in fall prevention.  This recommendation eventually led to the creation of the Fall Prevention Center of Excellence (FPCE)

    PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1

    Get PDF
    Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation

    The use of contextualised standardised client simulation to develop clinical reasoning in final year veterinary students

    Get PDF
    Clinical reasoning is an important skill for veterinary students to develop before graduation. Simulation has been studied in medical education as a method for developing clinical reasoning in students, but evidence supporting it is limited. This study involved the creation of a contextualized, standardized client simulation session that aimed to improve the clinical reasoning ability and confidence of final-year veterinary students. Sixty-eight participants completed three simulated primary-care consultations, with the client played by an actor and the pet by a healthy animal. Survey data showed that all participants felt that the session improved their clinical decision-making ability. Quantitative clinical reasoning self-assessment, performed using a validated rubric, triangulated this finding, showing an improvement in students’ perception of several components of their clinical reasoning skill level from before the simulation to after it. Blinded researcher analysis of the consultation video recordings found that students showed a significant increase in ability on the history-taking and making-sense-of-data (including formation of a differential diagnosis) components of the assessment rubric. Thirty students took part in focus groups investigating their experience with the simulation. Two themes arose from thematic analysis of these data: variety of reasoning methods and “It’s a different way of thinking.” The latter highlights differences between the decision making students practice during their time in education and the decision making they will use once they are in practice. Our findings suggest that simulation can be used to develop clinical reasoning in veterinary students, and they demonstrate the need for further research in this area

    Frequency-resolved Monte Carlo

    Get PDF
    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events
    corecore