566 research outputs found
‘‘Cryptic’’ group-I introns in the nuclear SSU-rRNA gene of Verticillium dahliae
Group-I introns are widespread—though irregularly distributed—in eukaryotic organisms, and they have been extensively used for discrimination and phylogenetic analyses. Within the Verticillium genus, which comprises important phytopathogenic fungi, a group-I intron was previously identified in the SSU-rRNA (18S) gene of only V. longisporum. In this work, we aimed at elucidating the SSU-located intron distribution in V. dahliae and other Verticillium species, and the assessment of heterogeneity regarding intron content among rDNA repeats of fungal strains. Using conserved PCR primers for the amplification of the SSU gene, a structurally similar novel intron (sub-group IC1) was detected in only a few V. dahliae isolates. However, when intron-specific primers were used for the screening of a diverse collection of Verticillium isolates that originally failed to produce intron-containing SSU amplicons, most were found to contain one or both intron types, at variable rDNA repeat numbers. This marked heterogeneity was confirmed with qRT-PCR by testing rDNA copy numbers (varying from 39 to 70 copies per haploid genome) and intron copy ratios in selected isolates. Our results demonstrate that (a) IC1 group-I introns are not specific to V. longisporum within the Verticillium genus, (b) V. dahliae isolates of vegetative compatibility groups (VCGs) 4A and 6, which bear the novel intron at most of their rDNA repeats, are closely related, and (c) there is considerable intra-genomic heterogeneity for the presence or absence of introns among the ribosomal repeats. These findings underline that distributions of introns in the highly heterogeneous repetitive rDNA complex should always be verified with sensitive methods to avoid misleading conclusions for the phylogeny of fungi and other organisms
Structural and phylogenetic analysis of the rDNA intergenic spacer region of Verticillium dahliae
The nuclear ribosomal intergenic spacer (IGS) region was structurally analyzed and exploited for molecular discrimination and phylogenetic analysis of vegetative compatibility groups (VCGs) of Verticillium dahliae. A structural study of 201 available IGS sequences of the fungus was performed, and four classes of ubiquitous repetitive elements, organized in higher-order repetitive structures or composite blocks, were detected in a variable IGS subregion. This subregion was amplified from an international collection of 59 V. dahliae isolates covering all VCGs, together with nine representative V. albo-atrum and V. longisporum isolates, and sequenced. Structural and phylogenetic analyses of the sequences of this polymorphic IGS subregion were consistently informative and allowed the identification of two main lineages in V. dahliae, that is, clade I including VCGs 1A, 1B, 2A, 4B, and 3 and clade II containing VCGs 2B, 4A, and 6. Analysis of IGS sequences proved a highly suitable molecular tool for (a) rapid interspecific differentiation, (b) intraspecific discrimination among VCGs of V. dahliae, facilitating high-throughput VCG confirmation and prediction/profiling, and (c) phylogenetic analysis within and among V. dahliae VCGs
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR
Storage-ring mass spectrometry was applied to neutron-rich Au
projectile fragments. Masses of Lu, Hf, Ta,
W, and Re nuclei were measured for the first time. The
uncertainty of previously known masses of W and Os nuclei
was improved. Observed irregularities on the smooth two-neutron separation
energies for Hf and W isotopes are linked to the collectivity phenomena in the
corresponding nuclei.Comment: 10 pages, 9 figures, 2 table
High-resolution measurement of the time-modulated orbital electron-capture and of the decay of hydrogen-like ions
Bound -state β- -decay of bare 205 Tl 81+
Beta decay into bound electron states of the daughter atom accompanied by the emission of a monochromatic antineutrino, has been predicted by Daudel et al.[1]. However, a noteworthy probability of βb- decay exists only for highly-charged ions, which makes its observation rather difficult
- …
