574 research outputs found

    Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2_2As2_2

    Full text link
    We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe2_2As2_2. Our data show that modest strain fields along the in-plane orthorhombic b-axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe2_2As2_2 samples detwinned via uniaxial strain that the in-plane C4_4 symmetry is broken by \textit{both} the structural lattice distortion \textit{and} long-range spin ordering at temperatures far above the nominal (strain-free), phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.Comment: 4 pages, 3 figure

    The evolution of antiferromagnetic susceptibility to uniaxial pressure in Ba(Fe{1-x}Co{x})2As2

    Full text link
    Neutron diffraction measurements are presented measuring the responses of both magnetic and structural order parameters of parent and lightly Co-doped Ba(Fe{1-x}Co{x})2As2 under the application of uniaxial pressure. We find that the uniaxial pressure induces a thermal shift in the onset of antiferromagnetic order that grows as a percentage of T_N as Co-doping is increased and the superconducting phase is approached. Additionally, as uniaxial pressure is increased within parent and lightly-doped Ba(Fe{1-x}Co{x})2As2 on the first order side of the tricritical point, we observe a decoupling between the onsets of the orthorhombic structural distortion and antiferromagnetism. Our findings place needed constraints on models exploring the nematic susceptibility of the bilayer pnictides in the tetragonal, paramagnetic regime.Comment: 10 pages, 7 figure

    Neutron scattering study of magnetic phase separation in nanocrystalline La5/8_{5/8}Ca3/8_{3/8}MnO3_3

    Full text link
    We demonstrate that magnetic phase separation and competing spin order in the colossal magnetoresistive (CMR) manganites can be directly explored via tuning strain in bulk samples of nanocrystalline La1−x_{1-x}Cax_xMnO3_3. Our results show that strain can be reversibly frozen into the lattice in order to stabilize coexisting antiferromagnetic domains within the nominally ferromagnetic metallic state of La5/8_{5/8}Ca3/8_{3/8}MnO3_3. The measurement of tunable phase separation via magnetic neutron powder diffraction presents a direct route of exploring the correlated spin properties of phase separated charge/magnetic order in highly strained CMR materials and opens a potential avenue for realizing intergrain spin tunnel junction networks with enhanced CMR behavior in a chemically homogeneous material.Comment: 6 pages, 4 figures. New figure and text added to manuscrip

    Unpinning the skyrmion lattice in MnSi: Effect of substitutional disorder

    Get PDF
    By employing magnetization and small angle neutron scattering measurements, we have investigated the behavior of the skyrmion lattice (SKL) and the helical order in MnS i 0 . 992 G a 0 . 008 Our results indicate that the order of the SKL is sensitive to the orientation of an applied magnetic field with respect to the crystal lattice and to variations in the sequence of small temperature and applied magnetic field changes. The disorder caused by the substitution of the heavier element Ga for Si is sufficient to reduce the pinning of the SKL to the underlying crystalline lattice, reducing the propensity for the SKL to be aligned with the crystal lattice. This tendency is most evident when the applied field is not well oriented with respect to the high symmetry axes of the crystal resulting in disorder in the long range SKL while maintaining sharp short range (radial) order. We have also investigated the effect of substituting heavier elements into MnSi on the reorientation process of the helical domains with field cycling in MnS i 0 . 992 G a 0 . 008 and M n 0 . 985 I r 0 . 015 Si A comparison of the reorientation process in these materials with field reduction indicates that the substitution of heavier elements on either Mn or Si sites creates a higher energy barrier for the reorientation of the helical order and for the formation of domains

    Magnetic order and the electronic ground state in the pyrochlore iridate Nd2Ir2O7

    Full text link
    We report a combined muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of the pyrochlore iridate Nd2Ir2O7. We observe the onset of strongly hysteretic behavior in the temperature dependent magnetization below 120 K, and an abrupt increase in the temperature dependent resistivity below 8 K. Zero field muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and that below 8 K a complex magnetically ordered ground state sets in, as evidenced by the onset of heavily damped spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator phase transition in this material and suggest that Nd2Ir2O7 lies either within or on the metallic side of the boundary of the Dirac semimetal regime within its topological phase diagram.Comment: 21 pages, 7 figure

    Zn-induced spin dynamics in overdoped La2−x_{2-x}Srx_xCu1−y_{1-y}Zny_yO4_4

    Full text link
    Spin fluctuations and the local spin susceptibility in isovalently Zn-substituted La2−x_{2-x}Srx_{x}Cu1−y_{1-y}Zny_yO4_4 (x=0.25x=0.25, y≈0.01y\approx0.01) are measured via inelastic neutron scattering techniques. As Zn2+^{2+} is substituted onto the Cu2+^{2+}-sites, an anomalous enhancement of the local spin susceptibility χ′′(ω)\chi^{\prime\prime}(\omega) appears due to the emergence of a commensurate antiferromagnetic excitation centered at wave vector \textbf{Q}=(π,π,0)=(\pi, \pi, 0) that coexists with the known incommensurate SDW excitations at \textbf{Q}HK=(π±δ,π),(π,π±δ)_{HK}=(\pi\pm\delta,\pi), (\pi,\pi\pm\delta). Our results support a picture of Zn-induced antiferromagnetic (AF) fluctuations appearing through a local staggered polarization of Cu2+^{2+}-spins, and the simultaneous suppression of Tc_c as AF fluctuations are slowed in proximity to Zn-impurities suggests the continued importance of high energy AF fluctuations at the far overdoped edge of superconductivity in the cuprates.Comment: 10 pages, 8 figure

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape
    • …
    corecore